[1] |
Bartel, B., Fink, G.R., 1994. Differential regulation of an auxin-producing nitrilase gene family in Arabidopsis thaliana. Proc Natl Acad Sci U S A 91, 6649-6653.
|
[2] |
Boerjan, W., Cervera, M.T., Delarue, M., Beeckman, T., Dewitte, W., Bellini, C., Caboche, M., Van Onckelen, H., Van Montagu, M., Inze, D., 1995. Superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell 7, 1405-1419.
|
[3] |
Chen, Q., Dai, X., De-Paoli, H., Cheng, Y., Takebayashi, Y., Kasahara, H., Kamiya, Y., Zhao, Y., 2014. Auxin overproduction in shoots cannot rescue auxin deficiencies in Arabidopsis roots. Plant Cell Physiol 55, 1072-1079.
|
[4] |
Chen, L., Tong, J., Xiao, L., Ruan, Y., Liu, J., Zeng, M., Huang, H., Wang, J.W., Xu, L., 2016. YUCCA-mediated auxin biogenesis is required for cell fate transition occurring during de novo root organogenesis in Arabidopsis. J Exp Bot 67, 4273-4284.
|
[5] |
Cheng, Y., Dai, X., Zhao, Y., 2006. Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev 20, 1790-1799.
|
[6] |
Cheng, Y., Dai, X., Zhao, Y., 2007. Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell 19, 2430-2439.
|
[7] |
Clough, S.J., Bent, A.F., 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16, 735-743.
|
[8] |
Comai, L., Kosuge, T., 1982. Cloning characterization of iaaM, a virulence determinant of Pseudomonas savastanoi. J Bacteriol 149, 40-46.
|
[9] |
Dai, X., Mashiguchi, K., Chen, Q., Kasahara, H., Kamiya, Y., Ojha, S., DuBois, J., Ballou, D., Zhao, Y., 2013. The biochemical mechanism of auxin biosynthesis by an Arabidopsis YUCCA flavin-containing monooxygenase. J Biol Chem 288, 1448-1457.
|
[10] |
Davies, R.T., Goetz, D.H., Lasswell, J., Anderson, M.N., Bartel, B., 1999. IAR3 encodes an auxin conjugate hydrolase from Arabidopsis. Plant Cell 11, 365-376.
|
[11] |
Delarue, M., Prinsen, E., Onckelen, H.V., Caboche, M., Bellini, C., 1998. Sur2 mutations of Arabidopsis thaliana define a new locus involved in the control of auxin homeostasis. Plant J 14, 603-611.
|
[12] |
Eklof, S., Astot, C., Sitbon, F., Moritz, T., Olsson, O., Sandberg, G., 2000. Transgenic tobacco plants co-expressing Agrobacterium iaa and ipt genes have wild-type hormone levels but display both auxin- and cytokinin-overproducing phenotypes. Plant J 23, 279-284.
|
[13] |
Gallavotti, A., Barazesh, S., Malcomber, S., Hall, D., Jackson, D., Schmidt, R.J., McSteen, P., 2008. sparse inflorescence1 encodes a monocot-specific YUCCA-like gene required for vegetative and reproductive development in maize. Proc Natl Acad Sci U S A 105, 15196-15201.
|
[14] |
Galweiler, L., Guan, C., Muller, A., Wisman, E., Mendgen, K., Yephremov, A., Palme, K., 1998. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282, 2226-2230.
|
[15] |
Gao, X., Chen, J., Dai, X., Zhang, D., Zhao, Y., 2016. An Effective Strategy for Reliably Isolating Heritable and Cas9-Free Arabidopsis Mutants Generated by CRISPR/Cas9-Mediated Genome Editing. Plant Physiol 171, 1794-1800.
|
[16] |
Gao, Y., Zhang, Y., Zhang, D., Dai, X., Estelle, M., Zhao, Y., 2015. Auxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis development. Proc Natl Acad Sci U S A 112, 2275-2280.
|
[17] |
Gao, Y., Zhao, Y., 2014. Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing. J Integr Plant Biol 56, 343-349.
|
[18] |
Kasahara, H., 2016. Current aspects of auxin biosynthesis in plants. Biosci Biotechnol Biochem 80, 34-42.
|
[19] |
Leznicki, A.J., Bandurski, R.S., 1988. Enzymic synthesis of indole-3-acetyl-1-O-beta-d-glucose. II. Metabolic characteristics of the enzyme. Plant Physiol 88, 1481-1485.
|
[20] |
Mashiguchi, K., Tanaka, K., Sakai, T., Sugawara, S., Kawaide, H., Natsume, M., Hanada, A., Yaeno, T., Shirasu, K., Yao, H., McSteen, P., Zhao, Y., Hayashi, K., Kamiya, Y., Kasahara, H., 2011. The main auxin biosynthesis pathway in Arabidopsis. Proc Natl Acad Sci U S A 108, 18512-18517.
|
[21] |
Mezzetti, B., Landi, L., Pandolfini, T., Spena, A., 2004. The defH9-iaaM auxin-synthesizing gene increases plant fecundity and fruit production in strawberry and raspberry. BMC Biotechnol 4, 4.
|
[22] |
Nonhebel, H.M., 2015. Tryptophan-Independent Indole-3-Acetic Acid Synthesis: Critical Evaluation of the Evidence. Plant Physiol 169, 1001-1005.
|
[23] |
Phillips, K.A., Skirpan, A.L., Liu, X., Christensen, A., Slewinski, T.L., Hudson, C., Barazesh, S., Cohen, J.D., Malcomber, S., McSteen, P., 2011. vanishing tassel2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize. Plant Cell 23, 550-566.
|
[24] |
Pollmann, S., Neu, D., Weiler, E.W., 2003. Molecular cloning and characterization of an amidase from Arabidopsis thaliana capable of converting indole-3-acetamide into the plant growth hormone, indole-3-acetic acid. Phytochemistry 62, 293-300.
|
[25] |
Romano, C.P., Robson, P.R., Smith, H., Estelle, M., Klee, H., 1995. Transgene-mediated auxin overproduction in Arabidopsis: hypocotyl elongation phenotype and interactions with the hy6-1 hypocotyl elongation and axr1 auxin-resistant mutants. Plant Mol Biol 27, 1071-1083.
|
[26] |
Staswick, P.E., Serban, B., Rowe, M., Tiryaki, I., Maldonado, M.T., Maldonado, M.C., Suza, W., 2005. Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17, 616-627.
|
[27] |
Stepanova, A.N., Robertson-Hoyt, J., Yun, J., Benavente, L.M., Xie, D.Y., Dolezal, K., Schlereth, A., Jurgens, G., Alonso, J.M., 2008. TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133, 177-191.
|
[28] |
Stepanova, A.N., Yun, J., Robles, L.M., Novak, O., He, W., Guo, H., Ljung, K., Alonso, J.M., 2011. The Arabidopsis YUCCA1 flavin monooxygenase functions in the indole-3-pyruvic acid branch of auxin biosynthesis. Plant Cell 23, 3961-3973.
|
[29] |
Strader, L.C., Bartel, B., 2009. The Arabidopsis PLEIOTROPIC DRUG RESISTANCE8/ABCG36 ATP binding cassette transporter modulates sensitivity to the auxin precursor indole-3-butyric acid. Plant Cell 21, 1992-2007.
|
[30] |
Sugawara, S., Hishiyama, S., Jikumaru, Y., Hanada, A., Nishimura, T., Koshiba, T., Zhao, Y., Kamiya, Y., Kasahara, H., 2009. Biochemical analyses of indole-3-acetaldoxime-dependent auxin biosynthesis in Arabidopsis. Proc Natl Acad Sci U S A 106, 5430-5435.
|
[31] |
Sugawara, S., Mashiguchi, K., Tanaka, K., Hishiyama, S., Sakai, T., Hanada, K., Kinoshita-Tsujimura, K., Yu, H., Dai, X., Takebayashi, Y., Takeda-Kamiya, N., Kakimoto, T., Kawaide, H., Natsume, M., Estelle, M., Zhao, Y., Hayashi, KI., Kamiya, Y., Kasahara, H., 2015. Distinct characteristics of indole-3-acetic acid and phenylacetic acid, two common auxins in plants. Plant Cell Physiol 56, 1641–1654.
|
[32] |
Tao, Y., Ferrer, J.L., Ljung, K., Pojer, F., Hong, F., Long, J.A., Li, L., Moreno, J.E., Bowman, M.E., Ivans, L.J., Cheng, Y., Lim, J., Zhao, Y., Ballare, C.L., Sandberg, G., Noel, J.P., Chory, J., 2008. Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133, 164-176.
|
[33] |
Wang, B., Chu, J., Yu, T., Xu, Q., Sun, X., Yuan, J., Xiong, G., Wang, G., Wang, Y., Li, J., 2015. Tryptophan-independent auxin biosynthesis contributes to early embryogenesis in Arabidopsis. Proc Natl Acad Sci U S A 112, 4821-4826.
|
[34] |
Won, C., Shen, X., Mashiguchi, K., Zheng, Z., Dai, X., Cheng, Y., Kasahara, H., Kamiya, Y., Chory, J., Zhao, Y., 2011. Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF ARABIDOPSIS and YUCCAs in Arabidopsis. Proc Natl Acad Sci U S A 108, 18518-18523.
|
[35] |
Yamada, T., Palm, C.J., Brooks, B., Kosuge, T., 1985. Nucleotide sequences of the Pseudomonas savastanoi indoleacetic acid genes show homology with Agrobacterium tumefaciens T-DNA. Proc Natl Acad Sci U S A 82, 6522-6526.
|
[36] |
Yamamoto, Y., Kamiya, N., Morinaka, Y., Matsuoka, M., Sazuka, T., 2007. Auxin biosynthesis by the YUCCA genes in rice. Plant Physiol 143, 1362-1371.
|
[37] |
Zhang, T., Li, R., Xing, J., Yan, L., Wang, R., Zhao, Y., 2018. The YUCCA-Auxin-WOX11 Module Controls Crown Root Development in Rice. Front Plant Sci 9, 523.
|
[38] |
Zhao, Y., 2012. Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Mol Plant 5, 334-338.
|
[39] |
Zhao, Y., 2014. Auxin biosynthesis. Arabidopsis Book 12, e0173.
|
[40] |
Zhao, Y., 2018. Essential Roles of Local Auxin Biosynthesis in Plant Development and in Adaptation to Environmental Changes. Annu Rev Plant Biol 69, 417-435.
|
[41] |
Zhao, Y., Christensen, S.K., Fankhauser, C., Cashman, J.R., Cohen, J.D., Weigel, D., Chory, J., 2001. A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291, 306-309.
|
[42] |
Zhao, Y., Hull, A.K., Gupta, N.R., Goss, K.A., Alonso, J., Ecker, J.R., Normanly, J., Chory, J., Celenza, J.L., 2002. Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes Dev 16, 3100-3112.
|
[43] |
Zhao, Z., Zhang, Y., Liu, X., Zhang, X., Liu, S., Yu, X., Ren, Y., Zheng, X., Zhou, K., Jiang, L., Guo, X., Gai, Y., Wu, C., Zhai, H., Wang, H., Wan, J., 2013. A role for a dioxygenase in auxin metabolism and reproductive development in rice. Dev Cell 27, 113-122.
|
[44] |
Zheng, Z., Guo, Y., Novak, O., Chen, W., Ljung, K., Noel, J.P., Chory, J., 2016. Local auxin metabolism regulates environment-induced hypocotyl elongation. Nat Plants 2, 16025.
|
[45] |
Zheng, Z., Guo, Y., Novak, O., Dai, X., Zhao, Y., Ljung, K., Noel, J.P., Chory, J., 2013. Coordination of auxin and ethylene biosynthesis by the aminotransferase VAS1. Nat Chem Biol 9, 244-246.
|