5.9
CiteScore
5.9
Impact Factor
Volume 47 Issue 3
Mar.  2020
Turn off MathJax
Article Contents

Defective arginine metabolism impairs mitochondrial homeostasis in Caenorhabditis elegans

doi: 10.1016/j.jgg.2020.02.007
More Information
  • Corresponding author: E-mail address: clyang@ynu.edu.cn (Chonglin Yang)
  • Publish Date: 2020-03-25
  • Arginine catabolism involves enzyme-dependent reactions in both mitochondria and the cytosol, defects in which may lead to hyperargininemia, a devastating developmental disorder. It is largely unknown if defective arginine catabolism has any effects on mitochondria. Here we report that normal arginine catabolism is essential for mitochondrial homeostasis in Caenorhabditis elegans. Mutations of the arginase gene argn-1 lead to abnormal mitochondrial enlargement and reduced adenosine triphosphate (ATP) production in C. elegans hypodermal cells. ARGN-1 localizes to mitochondria and its loss causes arginine accumulation, which disrupts mitochondrial dynamics. Heterologous expression of human ARG1 or ARG2 rescued the mitochondrial defects of argn-1 mutants. Importantly, genetic inactivation of the mitochondrial basic amino acid transporter SLC-25A29 or the mitochondrial glutamate transporter SLC-25A18.1 fully suppressed the mitochondrial defects caused by argn-1 mutations. These findings suggest that mitochondrial damage probably contributes to the pathogenesis of hyperargininemia and provide clues for developing therapeutic treatments for hyperargininemia.
  • loading
  • [1]
    Breckenridge, D.G., Kang, B.H., Kokel, D., Mitani, S., Staehelin, L.A., Xue, D., 2008. Caenorhabditis elegans drp-1 and fis-2 regulate distinct cell-death execution pathways downstream of ced-3 and independent of ced-9. Mol. Cell 31, 586-597.
    [2]
    Camacho, J.A., Rioseco-Camacho, N., 2009. The human and mouse SLC25A29 mitochondrial transporters rescue the deficient ornithine metabolism in fibroblasts of patients with the hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome. Pediatr. Res. 66, 35-41.
    [3]
    Carvalho, D.R., Brand, G.D., Brum, J.M., Takata, R.I., Speck-Martins, C.E., Pratesi, R., 2012. Analysis of novel ARG1 mutations causing hyperargininemia and correlation with arginase I activity in erythrocytes. Gene 509, 124-130.
    [4]
    Chen, D., Xiao, H., Zhang, K., Wang, B., Gao, Z., Jian, Y., Qi, X., Sun, J., Miao, L., Yang, C., 2010. Retromer is required for apoptotic cell clearance by phagocytic receptor recycling. Science 327, 1261-1264.
    [5]
    Ciechanover, A., Schwartz, A.L., 1994. The ubiquitin-mediated proteolytic pathway: mechanisms of recognition of the proteolytic substrate and involvement in the degradation of native cellular proteins. FASEB J. 8, 182-191.
    [6]
    Davis, M.W., Hammarlund, M., Harrach, T., Hullett, P., Olsen, S., Jorgensen, E.M., 2005. Rapid single nucleotide polymorphism mapping in C. elegans. BMC Genomics 6, 118.
    [7]
    Doghman-Bouguerra, M., Lalli, E., 2019. ER-mitochondria interactions: Both strength and weakness within cancer cells. Biochimica et biophysica acta. Mol. Cell Res. 1866, 650-662.
    [8]
    Fiermonte, G., Palmieri, L., Todisco, S., Agrimi, G., Palmieri, F., Walker, J.E., 2002. Identification of the mitochondrial glutamate transporter. Bacterial expression, reconstitution, functional characterization, and tissue distribution of two human isoforms. J. Biol. Chem. 277, 19289-19294.
    [9]
    Flynn, N.E., Meininger, C.J., Haynes, T.E., Wu, G., 2002. The metabolic basis of arginine nutrition and pharmacotherapy. Biomed. Pharmacoth. 56, 427-438.
    [10]
    Fong, S., Teo, E., Ng, L.F., Chen, C.B., Lakshmanan, L.N., Tsoi, S.Y., Moore, P.K., Inoue, T., Halliwell, B., Gruber, J., 2016. Energy crisis precedes global metabolic failure in a novel Caenorhabditis elegans Alzheimer Disease model. Sci. Rep. 6, 33781.
    [11]
    Friedman, J.R., Nunnari, J., 2014. Mitochondrial form and function. Nature 505, 335-343.
    [12]
    Gotoh, T., Sonoki, T., Nagasaki, A., Terada, K., Takiguchi, M., Mori, M., 1996. Molecular cloning of cDNA for nonhepatic mitochondrial arginase (arginase II) and comparison of its induction with nitric oxide synthase in a murine macrophage-like cell line. FEBS Lett. 395, 119-122.
    [13]
    Grody, W.W., Dizikes, G.J., Cederbaum, S.D., 1987. Human arginase isozymes. Isozymes 13, 181-214.
    [14]
    Hekimi, S., Wang, Y., Noe, A., 2016. Mitochondrial ROS and the Effectors of the Intrinsic Apoptotic Pathway in Aging Cells: The Discerning Killers! Front. Genet. 7, 161.
    [15]
    Hoogenraad, N., 2017. A brief history of the discovery of the mitochondrial unfolded protein response in mammalian cells. J. Bioenerg. Biomembr. 49, 293-295.
    [16]
    Ichishita, R., Tanaka, K., Sugiura, Y., Sayano, T., Mihara, K., Oka, T., 2008. An RNAi screen for mitochondrial proteins required to maintain the morphology of the organelle in Caenorhabditis elegans. J. Biochem. 143, 449-454.
    [17]
    Ignarro, L.J., Cirino, G., Casini, A., Napoli, C., 1999. Nitric oxide as a signaling molecule in the vascular system: an overview. J. Cardiovasc. Pharm. 34, 879-886.
    [18]
    Iyer, R., Jenkinson, C.P., Vockley, J.G., Kern, R.M., Grody, W.W., Cederbaum, S., 1998. The human arginases and arginase deficiency. J. Inherit. Metab. Dis. 21 Suppl 1, 86-100.
    [19]
    Iyer, R.K., Yoo, P.K., Kern, R.M., Rozengurt, N., Tsoa, R., O'Brien, W.E., Yu, H., Grody, W.W., Cederbaum, S.D., 2002. Mouse model for human arginase deficiency. Mol. Cell. Biol. 22, 4491-4498.
    [20]
    Jenkinson, C.P., Grody, W.W., Cederbaum, S.D., 1996. Comparative properties of arginases. Comparative biochemistry and physiology. Part B, Biochem. Mol. Biol. 114, 107-132.
    [21]
    Kanyo, Z.F., Scolnick, L.R., Ash, D.E., Christianson, D.W., 1996. Structure of a unique binuclear manganese cluster in arginase. Nature 383, 554-557.
    [22]
    Li, G., Regunathan, S., Barrow, C.J., Eshraghi, J., Cooper, R., Reis, D.J., 1994. Agmatine: an endogenous clonidine-displacing substance in the brain. Science 263, 966-969.
    [23]
    Mishra, P., Chan, D.C., 2016. Metabolic regulation of mitochondrial dynamics. J. Cell. Biol. 212, 379-387.
    [24]
    Morris, S.M., Jr., Bhamidipati, D., Kepka-Lenhart, D., 1997. Human type II arginase: sequence analysis and tissue-specific expression. Gene 193, 157-161.
    [25]
    Oxenoid, K., Dong, Y., Cao, C., Cui, T., Sancak, Y., Markhard, A.L., Grabarek, Z., Kong, L., Liu, Z., Ouyang, B., Cong, Y., Mootha, V.K., Chou, J.J., 2016. Architecture of the mitochondrial calcium uniporter. Nature 533, 269-273.
    [26]
    Pagliarini, D.J., Rutter, J., 2013. Hallmarks of a new era in mitochondrial biochemistry. Genes Dev. 27, 2615-2627.
    [27]
    Porcelli, V., Fiermonte, G., Longo, A., Palmieri, F., 2014. The human gene SLC25A29, of solute carrier family 25, encodes a mitochondrial transporter of basic amino acids. J. Biol. Chem. 289, 13374-13384.
    [28]
    Ray, A., Martinez, B.A., Berkowitz, L.A., Caldwell, G.A., Caldwell, K.A., 2014. Mitochondrial dysfunction, oxidative stress, and neurodegeneration elicited by a bacterial metabolite in a C. elegans Parkinson's model. Cell Death Dis. 5, e984.
    [29]
    Sarasija, S., Norman, K.R., 2015. A gamma-Secretase Independent Role for Presenilin in Calcium Homeostasis Impacts Mitochondrial Function and Morphology in Caenorhabditis elegans. Genetics 201, 1453-1466.
    [30]
    Sekoguchi, E., Sato, N., Yasui, A., Fukada, S., Nimura, Y., Aburatani, H., Ikeda, K., Matsuura, A., 2003. A novel mitochondrial carnitine-acylcarnitine translocase induced by partial hepatectomy and fasting. J. Biol. Chem. 278, 38796-38802.
    [31]
    Sin, Y.Y., Baron, G., Schulze, A., Funk, C.D., 2015. Arginase-1 deficiency. J. Mol. Med. 93, 1287-1296.
    [32]
    Vockley, J.G., Jenkinson, C.P., Shukla, H., Kern, R.M., Grody, W.W., Cederbaum, S.D., 1996. Cloning and characterization of the human type II arginase gene. Genomics 38, 118-123.
    [33]
    Wong, Y.C., Ysselstein, D., Krainc, D., 2018. Mitochondria-lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis. Nature 554, 382-386.
    [34]
    Wu, G., Morris, S.M., Jr., 1998. Arginine metabolism: nitric oxide and beyond. Biochem. J. 336 ( Pt 1), 1-17.
    [35]
    Wyss, M., Kaddurah-Daouk, R., 2000. Creatine and creatinine metabolism. Physiol. Rev. 80, 1107-1213.
    [36]
    Youle, R.J., van der Bliek, A.M., 2012. Mitochondrial fission, fusion, and stress. Science 337, 1062-1065.
    [37]
    Zhang, J., Zhao, C., Chang, Y., Zhao, Y., Li, Q., Lu, X., Xu, G., 2013. Analysis of free amino acids in flue-cured tobacco leaves using ultra-high performance liquid chromatography with single quadrupole mass spectrometry. J. Sep. Sci. 36, 2868-2877.
    [38]
    Zhou, J., Wang, X., 2019. The lysine catabolite saccharopine impairs development by disrupting mitochondrial homeostasis. J. Cell Biol. 218, 580-597.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures (6)

    Article Metrics

    Article views (83) PDF downloads (6) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return