5.9
CiteScore
5.9
Impact Factor
Volume 47 Issue 4
Apr.  2020
Turn off MathJax
Article Contents

Single-cell RNA sequencing identifies novel cell types in Drosophila blood

doi: 10.1016/j.jgg.2020.02.004
More Information
  • Drosophila has been extensively used to model the human blood-immune system, as both systems share many developmental and immune response mechanisms. However, while many human blood cell types have been identified, only three were found in flies: plasmatocytes, crystal cells and lamellocytes. To better understand the complexity of fly blood system, we used single-cell RNA sequencing technology to generate comprehensive gene expression profiles for Drosophila circulating blood cells. In addition to the known cell types, we identified two new Drosophila blood cell types: thanacytes and primocytes. Thanacytes, which express many stimulus response genes, are involved in distinct responses to different types of bacteria. Primocytes, which express cell fate commitment and signaling genes, appear to be involved in keeping stem cells in the circulating blood. Furthermore, our data revealed four novel plasmatocyte subtypes (Ppn+, CAH7+, Lsp+ and reservoir plasmatocytes), each with unique molecular identities and distinct predicted functions. We also identified cross-species markers from Drosophila hemocytes to human blood cells. Our analysis unveiled a more complex Drosophila blood system and broadened the scope of using Drosophila to model human blood system in development and disease.
  • These authors contributed equally.
  • loading
  • [1]
    Anderl, I., Vesala, L., Ihalainen, T.O., Vanha-Aho, L.M., Ando, I., Ramet, M., Hultmark, D., 2016. Transdifferentiation and proliferation in two distinct hemocyte lineages in Drosophila melanogaster larvae after wasp infection. PLoS pathog. 12, e1005746.
    [2]
    Artero, R.D., Monferrer, L., Garcia-Lopez, A., Baylies, M.K., 2006. Serpent and a hibris reporter are co-expressed in migrating cells during Drosophila hematopoiesis and Malpighian tubule formation. Hereditas. 143, 117-122.
    [3]
    Benes, H., Spivey, D.W., Miles, J., Neal, K., Edmondson, R.G., 1990. Fat-body-specific expression of the Drosophila Lsp-2 gene. SAAS Bull Biochem Biotechnol. 3, 129-133.
    [4]
    Bharadwaj, R., Roy, M., Ohyama, T., Sivan-Loukianova, E., Delannoy, M., Lloyd, T.E., Zlatic, M., Eberl, D.F., Kolodkin, A.L., 2013. Cbl-associated protein regulates assembly and function of two tension-sensing structures in Drosophila. Development. 140, 627-638.
    [5]
    Carter, L.L., Zhang, X., Dubey, C., Rogers, P., Tsui, L., Swain, S.L., 1998. Regulation of T cell subsets from naive to memory. J Immunother. 21, 181-187.
    [6]
    Cordes, E.J., Licking-Murray, K.D., Carlson, K.A., 2013. Differential gene expression related to Nora virus infection of Drosophila melanogaster. Virus Res. 175, 95-100.
    [7]
    Dostalova, A., Rommelaere, S., Poidevin, M., Lemaitre, B., 2017. Thioester-containing proteins regulate the Toll pathway and play a role in Drosophila defence against microbial pathogens and parasitoid wasps. BMC Bio. 15, 79.
    [8]
    Doulatov, S., Notta, F., Eppert, K., Nguyen, L.T., Ohashi, P.S., Dick, J.E., 2010. Revised map of the human progenitor hierarchy shows the origin of macrophages and dendritic cells in early lymphoid development. Nat Immunol. 11, 585-593.
    [9]
    Evans, C.J., Hartenstein, V., Banerjee, U., 2003. Thicker than blood: conserved mechanisms in Drosophila and vertebrate hematopoiesis. Dev Cell. 5, 673-690.
    [10]
    Hartenstein, V., Mandal, L., 2006. The blood/vascular system in a phylogenetic perspective. BioEssays. 28, 1203-1210.
    [11]
    Honti, V., Kurucz, E., Csordas, G., Laurinyecz, B., Markus, R., Ando, I., 2009. In vivo detection of lamellocytes in Drosophila melanogaster. Immunol Lett. 126, 83-84.
    [12]
    Hurst, D., Rylett, C.M., Isaac, R.E., Shirras, A.D., 2003. The Drosophila angiotensin-converting enzyme homologue Ance is required for spermiogenesis. Dev Bio. 254, 238-247.
    [13]
    Irving, P., Ubeda, J.M., Doucet, D., Troxler, L., Lagueux, M., Zachary, D., Hoffmann, J.A., Hetru, C., Meister, M., 2005. New insights into Drosophila larval haemocyte functions through genome-wide analysis. Cell Microbiol. 7, 335-350.
    [14]
    Jennewein, C., Sowa, R., Faber, A.C., Dildey, M., von Knethen, A., Meybohm, P., Scheller, B., Drose, S., Zacharowski, K., 2015. Contribution of Ninjurin1 to Toll-like receptor 4 signaling and systemic inflammation. Am J Resp Cell Mol. 53, 656-663.
    [15]
    Kawamoto, H., Katsura, Y., 2009. A new paradigm for hematopoietic cell lineages: revision of the classical concept of the myeloid-lymphoid dichotomy. Trends Immunol. 30, 193-200.
    [16]
    Kemp, C., Mueller, S., Goto, A., Barbier, V., Paro, S., Bonnay, F., Dostert, C., Troxler, L., Hetru, C., Meignin, C., Pfeffer, S., Hoffmann, J.A., Imler, J.L., 2013. Broad RNA interference-mediated antiviral immunity and virus-specific inducible responses in Drosophila. J Immunol. 190, 650-658.
    [17]
    Kocks, C., Cho, J.H., Nehme, N., Ulvila, J., Pearson, A.M., Meister, M., Strom, C., Conto, S.L., Hetru, C., Stuart, L.M., Stehle, T., Hoffmann, J.A., Reichhart, J.M., Ferrandon, D., Ramet, M., Ezekowitz, R.A., 2005. Eater, a transmembrane protein mediating phagocytosis of bacterial pathogens in Drosophila. Cell. 123, 335-346.
    [18]
    Kulkarni, V., Khadilkar, R.J., Magadi, S.S., Inamdar, M.S., 2011. Asrij maintains the stem cell niche and controls differentiation during Drosophila lymph gland hematopoiesis. PLoS One. 6, e27667.
    [19]
    Kurucz, E., Markus, R., Zsamboki, J., Folkl-Medzihradszky, K., Darula, Z., Vilmos, P., Udvardy, A., Krausz, I., Lukacsovich, T., Gateff, E., Zettervall, C.J., Hultmark, D., Ando, I., 2007a. Nimrod, a putative phagocytosis receptor with EGF repeats in Drosophila plasmatocytes. Curr Biol. CB 17, 649-654.
    [20]
    Kurucz, E., Vaczi, B., Markus, R., Laurinyecz, B., Vilmos, P., Zsamboki, J., Csorba, K., Gateff, E., Hultmark, D., Ando, I., 2007b. Definition of Drosophila hemocyte subsets by cell-type specific antigens. Acta Biol Hung. 58 Suppl, 95-111.
    [21]
    Makki, R., Meister, M., Pennetier, D., Ubeda, J.M., Braun, A., Daburon, V., Krzemien, J., Bourbon, H.M., Zhou, R., Vincent, A., Crozatier, M., 2010. A short receptor downregulates JAK/STAT signalling to control the Drosophila cellular immune response. PLoS Biol. 8, e1000441.
    [22]
    Meldrum, N.U., Roughton, F.J., 1933. Carbonic anhydrase. Its preparation and properties. J Physiol. 80, 113-142.
    [23]
    Nelson, R.E., Fessler, L.I., Takagi, Y., Blumberg, B., Keene, D.R., Olson, P.F., Parker, C.G., Fessler, J.H., 1994. Peroxidasin: a novel enzyme-matrix protein of Drosophila development. EMBO J. 13, 3438-3447.
    [24]
    Page-McCaw, A., Serano, J., Sante, J.M., Rubin, G.M., 2003. Drosophila matrix metalloproteinases are required for tissue remodeling, but not embryonic development. Dev Cell. 4, 95-106.
    [25]
    Qiu, X., Hill, A., Packer, J., Lin, D., Ma, Y.A., Trapnell, C., 2017. Single-cell mRNA quantification and differential analysis with Census. Nat methods. 14, 309-315.
    [26]
    Rizki, T.M., Rizki, R.M., 1992. Lamellocyte differentiation in Drosophila larvae parasitized by Leptopilina. Dev Comp Immunol. 16, 103-110.
    [27]
    Saliba, A.E., Westermann, A.J., Gorski, S.A., Vogel, J., 2014. Single-cell RNA-seq: advances and future challenges. Nucleic Acids Res. 42, 8845-8860.
    [28]
    Sedelies, K.A., Sayers, T.J., Edwards, K.M., Chen, W., Pellicci, D.G., Godfrey, D.I., Trapani, J.A., 2004. Discordant regulation of granzyme H and granzyme B expression in human lymphocytes. J Biol Chem. 279, 26581-26587.
    [29]
    Shokal, U., Eleftherianos, I., 2017a. The Drosophila Thioester containing Protein-4 participates in the induction of the cellular immune response to the pathogen Photorhabdus. Dev Comp Immunol. 76, 200-208.
    [30]
    Shokal, U., Eleftherianos, I., 2017b. Thioester-Containing Protein-4 Regulates the Drosophila Immune Signaling and Function against the Pathogen Photorhabdus. J Innate Immun. 9, 83-93.
    [31]
    Shokal, U., Kopydlowski, H., Harsh, S., Eleftherianos, I., 2018. Thioester-Containing Proteins 2 and 4 Affect the Metabolic Activity and Inflammation Response in Drosophila. Infection and immunity 86.
    [32]
    Trapani, J.A., 2001. Granzymes: a family of lymphocyte granule serine proteases. Genome Biol. 2, reviews3014.1-reviews3014.7.
    [33]
    Uttenweiler-Joseph, S., Moniatte, M., Lagueux, M., Van Dorsselaer, A., Hoffmann, J.A., Bulet, P., 1998. Differential display of peptides induced during the immune response of Drosophila: a matrix-assisted laser desorption ionization time-of-flight mass spectrometry study. Proc Natl Acad Sci U S A. 95, 11342-11347.
    [34]
    Verleyen, P., Baggerman, G., D'Hertog, W., Vierstraete, E., Husson, S.J., Schoofs, L., 2006. Identification of new immune induced molecules in the haemolymph of Drosophila melanogaster by 2D-nanoLC MS/MS. J Insect Physiol. 52, 379-388.
    [35]
    Williams, M.J., 2007. Drosophila hemopoiesis and cellular immunity. J Immunol. 178, 4711-4716.
    [36]
    Zheng, G.X., Terry, J.M., Belgrader, P., Ryvkin, P., Bent, Z.W., Wilson, R., Ziraldo, S.B., Wheeler, T.D., McDermott, G.P., Zhu, J., Gregory, M.T., Shuga, J., Montesclaros, L., Underwood, J.G., Masquelier, D.A., Nishimura, S.Y., Schnall-Levin, M., Wyatt, P.W., Hindson, C.M., Bharadwaj, R., Wong, A., Ness, K.D., Beppu, L.W., Deeg, H.J., McFarland, C., Loeb, K.R., Valente, W.J., Ericson, N.G., Stevens, E.A., Radich, J.P., Mikkelsen, T.S., Hindson, B.J., Bielas, J.H., 2017. Massively parallel digital transcriptional profiling of single cells. Nat Commun. 8, 14049.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures (7)

    Article Metrics

    Article views (122) PDF downloads (5) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return