[1] |
Bassett, A.R., Tibbit, C., Ponting, C.P., Liu, J.L., 2013. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep 4, 220-228.
|
[2] |
Bontems, F., Stein, A., Marlow, F., Lyautey, J., Gupta, T., Mullins, M.C., Dosch, R., 2009. Bucky ball organizes germ plasm assembly in zebrafish. Curr Biol 19, 414-422.
|
[3] |
Branam, A.M., Hoffman, G.G., Pelegri, F., Greenspan, D.S., 2010. Zebrafish chordin-like and chordin are functionally redundant in regulating patterning of the dorsoventral axis. Dev Biol 341, 444-458.
|
[4] |
Brion, F., Tyler, C.R., Palazzi, X., Laillet, B., Porcher, J.M., Garric, J., Flammarion, P., 2004. Impacts of 17 beta-estradiol, including environmentally relevant concentrations, on reproduction after exposure during embryo-larval-, juvenile- and adult-life stages in zebrafish (Danio rerio). Aquat Toxicol.68, 193-217.
|
[5] |
Burgess, S., Reim, G., Chen, W.B., Hopkins, N., Brand, M., 2002. The zebrafish spiel-ohne-grenzen (spg) gene encodes the POU domain protein Pou2 related to mammalian Oct4 and is essential for formation of the midbrain and hindbrain, and for pre-gastrula morphogenesis. Development 129, 905-916.
|
[6] |
Chang, N., Sun, C., Gao, L., Zhu, D., Xu, X., Zhu, X., Xiong, J.W., Xi, J.J., 2013. Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res 23, 465-472.
|
[7] |
Ciruna, B., Weidinger, G., Knaut, H., Thisse, B., Thisse, C., Raz, E., Schier, A.F., 2002. Production of maternal-zygotic mutant zebrafish by germ-line replacement. Proc. Natl. Acad. Sci. U. S. A. 99, 14919-14924.
|
[8] |
Dosch, R., Wagner, D.S., Mintzer, K.A., Runke, G., Wiemelt, A.P., Mullins, M.C., 2004. Maternal control of vertebrate development before the midblastula transition: mutants from the zebrafish I. Dev Cell 6, 771-780.
|
[9] |
Gritsman, K., Zhang, J.J., Cheng, S., Heckscher, E., Talbot, W.S., Schier, A.F., 1999. The EGF-CFC protein one-eyed pinhead is essential for nodal signaling. Cell 97, 121-132.
|
[10] |
Hammerschmidt, M., Pelegri, F., Mullins, M.C., Kane, D.A., van Eeden, F.J., Granato, M., Brand, M., Furutani-Seiki, M., Haffter, P., Heisenberg, C.P., Jiang, Y.J., Kelsh, R.N., Odenthal, J., Warga, R.M., Nusslein-Volhard, C., 1996. dino and mercedes, two genes regulating dorsal development in the zebrafish embryo. Development 123, 95-102.
|
[11] |
Harvey, S.A., Sealy, I., Kettleborough, R., Fenyes, F., White, R., Stemple, D., Smith, J.C., 2013. Identification of the zebrafish maternal and paternal transcriptomes. Development 140, 2703-2710.
|
[12] |
He, M.D., Zhang, F.H., Wang, H.L., Wang, H.P., Zhu, Z.Y., Sun, Y.H., 2015. Efficient ligase 3-dependent microhomology-mediated end joining repair of DNA double-strand breaks in zebrafish embryos. Mutat Res 780, 86-96.
|
[13] |
Heyn, P., Kalinka, A.T., Tomancak, P., Neugebauer, K.M., 2015. Introns and gene expression: cellular constraints, transcriptional regulation, and evolutionary consequences. Bioessays 37, 148-154.
|
[14] |
Hruscha, A., Krawitz, P., Rechenberg, A., Heinrich, V., Hecht, J., Haass, C., Schmid, B., 2013. Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Development 140, 4982-4987.
|
[15] |
Hwang, W.Y., Fu, Y., Reyon, D., Maeder, M.L., Tsai, S.Q., Sander, J.D., Peterson, R.T., Yeh, J.R., Joung, J.K., 2013. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31, 227-229.
|
[16] |
Kim, C.H., Oda, T., Itoh, M., Jiang, D., Artinger, K.B., Chandrasekharappa, S.C., Driever, W., Chitnis, A.B., 2000. Repressor activity of headless/Tcf3 is essential for vertebrate head formation. Nature 407, 913-916.
|
[17] |
Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., Schilling, T.F., 1995. Stages of embryonic development of the zebrafish. Dev Dyn 203, 253-310.
|
[18] |
Koprunner, M., Thisse, C., Thisse, B., Raz, E., 2001. A zebrafish nanos-related gene is essential for the development of primordial germ cells. Genes Dev. 15, 2877-2885.
|
[19] |
Krishnakumar, P., Riemer, S., Perera, R., Lingner, T., Goloborodko, A., Khalifa, H., Bontems, F., Kaufholz, F., El-Brolosy, M.A., Dosch, R., 2018. Functional equivalence of germ plasm organizers. PLoS Genet 14, e1007696.
|
[20] |
Lacerda, S., Costa, G., Campos-Junior, P., Segatelli, T., Yazawa, R., Takeuchi, Y., Morita, T., Yoshizaki, G., Franca, L., 2013. Germ cell transplantation as a potential biotechnological approach to fish reproduction. Fish Physiol Biochem 39, 3-11.
|
[21] |
Lee, M.T., Bonneau, A.R., Takacs, C.M., Bazzini, A.A., DiVito, K.R., Fleming, E.S., Giraldez, A.J., 2013. Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-to-zygotic transition. Nature 503, 360-364.
|
[22] |
Lewis, J.L., Bonner, J., Modrell, M., Ragland, J.W., Moon, R.T., Dorsky, R.I., Raible, D.W., 2004. Reiterated Wnt signaling during zebrafish neural crest development. Development 131, 1299-1308.
|
[23] |
Liu, Y., Zhang, C., Zhang, Y., Lin, S., Shi, D.L., Shao, M., 2018. Highly efficient genome editing using oocyte-specific zcas9 transgenic zebrafish. J. Genet. Genomics. 45, 509-512.
|
[24] |
Moreno-Mateos, M.A., Vejnar, C.E., Beaudoin, J.D., Fernandez, J.P., Mis, E.K., Khokha, M.K., Giraldez, A.J., 2015. CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat Methods 12, 982-988.
|
[25] |
Nasevicius, A., Ekker, S.C., 2000. Effective targeted gene 'knockdown' in zebrafish. Nat. Genet. 26, 216-220.
|
[26] |
Patton, E.E., Zon, L.I., 2001. The art and design of genetic screens: zebrafish. Nat Rev Genet 2, 956-966.
|
[27] |
Reim, G., Brand, M., 2006. Maternal control of vertebrate dorsoventral axis formation and epiboly by the POU domain protein Spg/Pou2/Oct4. Development 133, 2757-2770.
|
[28] |
Reim, G., Mizoguchi, T., Stainier, D.Y., Kikuchi, Y., Brand, M., 2004. The POU domain protein Spg (Pou2/Oct4) is essential for endoderm formation in cooperation with the HMG domain protein Casanova. Dev. Cell 6, 91-101.
|
[29] |
Saito, T., Goto-Kazeto, R., Arai, K., Yamaha, E., 2008. Xenogenesis in teleost fish through generation of germ-line chimeras by single primordial germ cell transplantation. Biol Reprod 78, 159-166.
|
[30] |
Schulte-Merker, S., Lee, K.J., McMahon, A.P., Hammerschmidt, M., 1997. The zebrafish organizer requires chordino. Nature 387, 862-863.
|
[31] |
Sun, Y., Zhang, B., Luo, L., Shi, D.-L., Cui, Z., Huang, H., Cao, Y., Shu, X., Zhang, W., Zhou, J., Li, Y., Du, J., Zhao, Q., Chen, J., Zhong, H., Zhong, T.P., Li, L., Xiong, J.-W., Peng, J., Xiao, W., Zhang, J., Yao, J., Yin, Z., Mo, X., Peng, G., Zhu, J., Chen, Y., Zhou, Y., Liu, D., Pan, W., Zhang, Y., Ruan, H., Liu, F., Zhu, Z., Meng, A., 2020. Systematical genome editing of the genes in zebrafish Chromosome 1 by CRISPR/Cas9. Genome Research, 30: 118-126.
|
[32] |
Sun, Y.H., 2017. Genome editing opens a new era for physiological study and directional breeding of fishes. Sci. Bull. 62, 157-158.
|
[33] |
Thyme, S.B., Schier, A.F., 2016. Polq-Mediated End Joining Is Essential for Surviving DNA Double-Strand Breaks during Early Zebrafish Development (vol 15, pg 707, 2016). Cell Rep. 15, 1611-1613.
|
[34] |
Tzung, K.W., Goto, R., Saju, J.M., Sreenivasan, R., Saito, T., Arai, K., Yamaha, E., Hossain, M.S., Calvert, M.E., Orban, L., 2015. Early depletion of primordial germ cells in zebrafish promotes testis formation. Stem Cell Rep. 5, 156.
|
[35] |
Tzur, Y.B., Friedland, A.E., Nadarajan, S., Church, G.M., Calarco, J.A., Colaiacovo, M.P., 2013. Heritable custom genomic modifications in Caenorhabditis elegans via a CRISPR-Cas9 system. Genetics 195, 1181-1185.
|
[36] |
Veil, M., Schaechtle, M.A., Gao, M., Kirner, V., Buryanova, L., Grethen, R., Onichtchouk, D., 2018. Maternal Nanog is required for zebrafish embryo architecture and for cell viability during gastrulation. Development 145.
|
[37] |
Wagner, D.S., Dosch, R., Mintzer, K.A., Wiemelt, A.P., Mullins, M.C., 2004. Maternal control of development at the midblastula transition and beyond: mutants from the zebrafish II. Dev Cell 6, 781-790.
|
[38] |
Wei, C.Y., Wang, H.P., Zhu, Z.Y., Sun, Y.H., 2014. Transcriptional factors smad1 and smad9 act redundantly to mediate zebrafish ventral specification downstream of smad5. J Biol Chem 289, 6604-6618.
|
[39] |
Weidinger, G., Stebler, J., Slanchev, K., Dumstrei, K., Wise, C., Lovell-Badge, R., Thisse, C., Thisse, B., Raz, E., 2003. dead end, a novel vertebrate germ plasm component, is required for zebrafish primordial germ cell migration and survival. Cur. Biol. 13, 1429-1434.
|
[40] |
Welten, M.C., de Haan, S.B., van den Boogert, N., Noordermeer, J.N., Lamers, G.E., Spaink, H.P., Meijer, A.H., Verbeek, F.J., 2006. ZebraFISH: fluorescent in situ hybridization protocol and three-dimensional imaging of gene expression patterns. Zebrafish 3, 465-476.
|
[41] |
Xiong, F., Wei, Z.Q., Zhu, Z.Y., Sun, Y.H., 2013. Targeted expression in zebrafish primordial germ cells by Cre/loxP and Gal4/UAS systems. Mar Biotechnol (NY) 15, 526-539.
|
[42] |
Ye, D., Zhu, L., Zhang, Q., Xiong, F., Wang, H., Wang, X., He, M., Zhu, Z., Sun, Y., 2019. Abundance of Early Embryonic Primordial Germ Cells Promotes Zebrafish Female Differentiation as Revealed by Lifetime Labeling of Germline. Mar Biotechnol (NY) 21, 217-228.
|
[43] |
Zhang, F.H., Wang, H.P., Huang, S.Y., Xiong, F., Zhu, Z.Y., Sun, Y., 2016. A comparison of the knockout efficiencies of two codon-optimized Cas9 coding sequences in zebrafish embryos. Hereditas(Beijing) 38, 144-154 (in Chinese with an English abstract).
|