5.9
CiteScore
5.9
Impact Factor
Volume 47 Issue 1
Jan.  2020
Turn off MathJax
Article Contents

Molecular feature and therapeutic perspectives of immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome

doi: 10.1016/j.jgg.2019.11.011
More Information
  • Regulatory T (Treg) cells, a subtype of immunosuppressive CD4+ T cells, are vital for maintaining immune homeostasis in healthy people. Forkhead box protein P3 (FOXP3), a member of the forkhead-winged-helix family, is the pivotal transcriptional factor of Treg cells. The expression, post-translational modifications, and protein complex of FOXP3 present a great impact on the functional stability and immune plasticity of Treg cells in vivo. In particular, the mutation of FOXP3 can result in immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome, which is a rare genetic disease mostly diagnosed in early childhood and can soon be fatal. IPEX syndrome is related to several manifestations, including dermatitis, enteropathy, type 1 diabetes, thyroiditis, and so on. Here, we summarize some recent findings on FOXP3 regulation and Treg cell function. We also review the current knowledge about the underlying mechanism of FOXP3 mutant-induced IPEX syndrome and some latest clinical prospects. At last, this review offers a novel insight into the role played by the FOXP3 complex in potential therapeutic applications in IPEX syndrome.
  • loading
  • [1]
    Aarts-Riemens, T., Emmelot, M.E., Verdonck, L.F., Mutis, T., 2008. Forced overexpression of either of the two common human Foxp3 isoforms can induce regulatory T cells from CD4(+)CD25(-) cells. Eur. J. Immunol. 38, 1381-1390.
    [2]
    Agudo, J., Park, E.S., Rose, S.A., Alibo, E., Sweeney, R., Dhainaut, M., Kobayashi, K.S., Sachidanandam, R., Baccarini, A., Merad, M., Brown, B.D., 2018. Quiescent tissue stem cells evade immune surveillance. Immunity 48, 271-285 e275.
    [3]
    Aiello, S., Rocchetta, F., Longaretti, L., Faravelli, S., Todeschini, M., Cassis, L., Pezzuto, F., Tomasoni, S., Azzollini, N., Mister, M., Mele, C., Conti, S., Breno, M., Remuzzi, G., Noris, M., Benigni, A., 2017. Extracellular vesicles derived from T regulatory cells suppress T cell proliferation and prolong allograft survival. Sci. Rep. 7, 11518.
    [4]
    Aiuti, A., Cattaneo, F., Galimberti, S., Benninghoff, U., Cassani, B., Callegaro, L., Scaramuzza, S., Andolfi, G., Mirolo, M., Brigida, I., Tabucchi, A., Carlucci, F., Eibl, M., Aker, M., Slavin, S., Al-Mousa, H., Al Ghonaium, A., Ferster, A., Duppenthaler, A., Notarangelo, L., Wintergerst, U., Buckley, R.H., Bregni, M., Marktel, S., Valsecchi, M.G., Rossi, P., Ciceri, F., Miniero, R., Bordignon, C., Roncarolo, M.G., 2009. Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N. Engl. J. Med. 360, 447-458.
    [5]
    Aiuti, A., Biasco, L., Scaramuzza, S., Ferrua, F., Cicalese, M.P., Baricordi, C., Dionisio, F., Calabria, A., Giannelli, S., Castiello, M.C., Bosticardo, M., Evangelio, C., Assanelli, A., Casiraghi, M., Di Nunzio, S., Callegaro, L., Benati, C., Rizzardi, P., Pellin, D., Di Serio, C., Schmidt, M., Von Kalle, C., Gardner, J., Mehta, N., Neduva, V., Dow, D.J., Galy, A., Miniero, R., Finocchi, A., Metin, A., Banerjee, P.P., Orange, J.S., Galimberti, S., Valsecchi, M.G., Biffi, A., Montini, E., Villa, A., Ciceri, F., Roncarolo, M.G., Naldini, L., 2013. Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome. Science 341, 1233151.
    [6]
    Alharris, E., Alghetaa, H., Seth, R., Chatterjee, S., Singh, N.P., Nagarkatti, M., Nagarkatti, P., 2018. Resveratrol attenuates allergic asthma and associated inflammation in the lungs through regulation of miRNA-34a that targets FoxP3 in mice. Front. Immunol. 9, 2992.
    [7]
    Ali, N., Zirak, B., Rodriguez, R.S., Pauli, M.L., Truong, H.A., Lai, K., Ahn, R., Corbin, K., Lowe, M.M., Scharschmidt, T.C., Taravati, K., Tan, M.R., Ricardo-Gonzalez, R.R., Nosbaum, A., Bertolini, M., Liao, W., Nestle, F.O., Paus, R., Cotsarelis, G., Abbas, A.K., Rosenblum, M.D., 2017. Regulatory T cells in skin facilitate epithelial stem cell differentiation. Cell 169, 1119-1129 e1111.
    [8]
    Alkorta-Aranburu, G., Carmody, D., Cheng, Y.W., Nelakuditi, V., Ma, L., Dickens, J.T., Das, S., Greeley, S.A.W., Del Gaudio, D., 2014. Phenotypic heterogeneity in monogenic diabetes: the clinical and diagnostic utility of a gene panel-based next-generation sequencing approach. Mol. Genet. Metabol. 113, 315-320.
    [9]
    Allan, S.E., Passerini, L., Bacchetta, R., Crellin, N., Dai, M., Orban, P.C., Ziegler, S.F., Roncarolo, M.G., Levings, M.K., 2005. The role of 2 FOXP3 isoforms in the generation of human CD4+ Tregs. J. Clin. Invest. 115, 3276-3284.
    [10]
    Allan, S.E., Alstad, A.N., Merindol, N., Crellin, N.K., Amendola, M., Bacchetta, R., Naldini, L., Roncarolo, M.G., Soudeyns, H., Levings, M.K., 2008. Generation of potent and stable human CD4+ T regulatory cells by activation-independent expression of FOXP3. Mol. Ther. 16, 194-202.
    [11]
    Asano, T., Meguri, Y., Yoshioka, T., Kishi, Y., Iwamoto, M., Nakamura, M., Sando, Y., Yagita, H., Koreth, J., Kim, H.T., Alyea, E.P., Armand, P., Cutler, C.S., Ho, V.T., Antin, J.H., Soiffer, R.J., Maeda, Y., Tanimoto, M., Ritz, J., Matsuoka, K.I., 2017. PD-1 modulates regulatory T-cell homeostasis during low-dose interleukin-2 therapy. Blood 129, 2186-2197.
    [12]
    Bacchetta, R., Barzaghi, F., Roncarolo, M.G., 2018. From IPEX syndrome to FOXP3 mutation: a lesson on immune dysregulation. Ann. N. Y. Acad. Sci. 1417, 5-22.
    [13]
    Bailey-Bucktrout, S.L., Martinez-Llordella, M., Zhou, X., Anthony, B., Rosenthal, W., Luche, H., Fehling, H.J., Bluestone, J.A., 2013. Self-antigen-driven activation induces instability of regulatory T cells during an inflammatory autoimmune response. Immunity 39, 949-962.
    [14]
    Bandukwala, H.S., Wu, Y., Feuerer, M., Chen, Y., Barboza, B., Ghosh, S., Stroud, J.C., Benoist, C., Mathis, D., Rao, A., Chen, L., 2011. Structure of a domain-swapped FOXP3 dimer on DNA and its function in regulatory T cells. Immunity 34, 479-491.
    [15]
    Barzaghi, F., Passerini, L., Bacchetta, R., 2012. Immune dysregulation, polyendocrinopathy, enteropathy, x-linked syndrome: a paradigm of immunodeficiency with autoimmunity. Front. Immunol. 3, 211.
    [16]
    Baron, U., Floess, S., Wieczorek, G., Baumann, K., Grutzkau, A., Dong, J., Thiel, A., Boeld, T.J., Hoffmann, P., Edinger, M., Turbachova, I., Hamann, A., Olek, S., Huehn, J., 2007. DNA demethylation in the human FOXP3 locus discriminates regulatory T cells from activated FOXP3+conventional T cells. Eur. J. Immunol. 37, 2378-2389.
    [17]
    Barzaghi, F., Amaya Hernandez, L.C., Neven, B., Ricci, S., Kucuk, Z.Y., Bleesing, J.J., Nademi, Z., Slatter, M.A., Ulloa, E.R., Shcherbina, A., Roppelt, A., Worth, A., Silva, J., Aiuti, A., Murguia-Favela, L., Speckmann, C., Carneiro-Sampaio, M., Fernandes, J.F., Baris, S., Ozen, A., Karakoc-Aydiner, E., Kiykim, A., Schulz, A., Steinmann, S., Notarangelo, L.D., Gambineri, E., Lionetti, P., Shearer, W.T., Forbes, L.R., Martinez, C., Moshous, D., Blanche, S., Fisher, A., Ruemmele, F.M., Tissandier, C., Ouachee-Chardin, M., Rieux-Laucat, F., Cavazzana, M., Qasim, W., Lucarelli, B., Albert, M.H., Kobayashi, I., Alonso, L., Diaz De Heredia, C., Kanegane, H., Lawitschka, A., Seo, J.J., Gonzalez-Vicent, M., Diaz, M.A., Goyal, R.K., Sauer, M.G., Yesilipek, A., Kim, M., Yilmaz-Demirdag, Y., Bhatia, M., Khlevner, J., Richmond Padilla, E.J., Martino, S., Montin, D., Neth, O., Molinos-Quintana, A., Valverde-Fernandez, J., Broides, A., Pinsk, V., Ballauf, A., Haerynck, F., Bordon, V., Dhooge, C., Garcia-Lloret, M.L., Bredius, R.G., Kalwak, K., Haddad, E., Seidel, M.G., Duckers, G., Pai, S.Y., Dvorak, C.C., Ehl, S., Locatelli, F., Goldman, F., Gennery, A.R., Cowan, M.J., Roncarolo, M.G., Bacchetta, R., Primary Immune Deficiency Treatment, C., the Inborn Errors Working Party of the European Society for, B., Marrow, T., 2018. Long-term follow-up of IPEX syndrome patients after different therapeutic strategies: an international multicenter retrospective study. J. Allergy Clin. Immunol. 141, 1036-1049 e1035.
    [18]
    Baud, O., Goulet, O., Canioni, D., Le Deist, F., Radford, I., Rieu, D., Dupuis-Girod, S., Cerf-Bensussan, N., Cavazzana-Calvo, M., Brousse, N., Fischer, A., Casanova, J.L., 2001. Treatment of the immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) by allogeneic bone marrow transplantation. N. Engl. J. Med. 344, 1758-1762.
    [19]
    Bennett, C.L., Brunkow, M.E., Ramsdell, F., O'Briant, K.C., Zhu, Q., Fuleihan, R.L., Shigeoka, A.O., Ochs, H.D., Chance, P.F., 2001. A rare polyadenylation signal mutation of the FOXP3 gene (AAUAAA-->AAUGAA) leads to the IPEX syndrome. Immunogenetics 53, 435-439.
    [20]
    Bennett, C.L., Yoshioka, R., Kiyosawa, H., Barker, D.F., Fain, P.R., Shigeoka, A.O., Chance, P.F., 2000. X-Linked syndrome of polyendocrinopathy, immune dysfunction, and diarrhea maps to Xp11.23-Xq13.3. Am. J. Hum. Genet. 66, 461-468.
    [21]
    Beres, A., Komorowski, R., Mihara, M., Drobyski, W.R., 2011. Instability of Foxp3 expression limits the ability of induced regulatory T cells to mitigate graft versus host disease. Clin. Canc. Res. 17, 3969-3983.
    [22]
    Bin Dhuban, K., d'Hennezel, E., Nagai, Y., Xiao, Y., Shao, S., Istomine, R., Alvarez, F., Ben-Shoshan, M., Ochs, H., Mazer, B., Li, B., Sekine, C., Berezov, A., Hancock, W., Torgerson, T.R., Greene, M.I., Piccirillo, C.A., 2017. Suppression by human FOXP3+regulatory T cells requires FOXP3-TIP60 interactions. Sci. Immunol. 2.
    [23]
    Blair, P.J., Bultman, S.J., Haas, J.C., Rouse, B.T., Wilkinson, J.E., Godfrey, V.L., 1994. CD4+CD8- T cells are the effector cells in disease pathogenesis in the scurfy (sf) mouse. J. Immunol. 153, 3764-3774.
    [24]
    Bousfiha, A., Jeddane, L., Picard, C., Ailal, F., Bobby Gaspar, H., Al-Herz, W., Chatila, T., Crow, Y.J., Cunningham-Rundles, C., Etzioni, A., Franco, J.L., Holland, S.M., Klein, C., Morio, T., Ochs, H.D., Oksenhendler, E., Puck, J., Tang, M.L.K., Tangye, S.G., Torgerson, T.R., Casanova, J.L., Sullivan, K.E., 2018. The 2017 IUIS phenotypic classification for primary immunodeficiencies. J. Clin. Immunol. 38, 129-143.
    [25]
    Brajic, A., Franckaert, D., Burton, O., Bornschein, S., Calvanese, A.L., Demeyer, S., Cools, J., Dooley, J., Schlenner, S., Liston, A., 2018. The long non-coding RNA flatr anticipates Foxp3 expression in regulatory T cells. Front. Immunol. 9, 1989.
    [26]
    Brunkow, M.E., Jeffery, E.W., Hjerrild, K.A., Paeper, B., Clark, L.B., Yasayko, S.A., Wilkinson, J.E., Galas, D., Ziegler, S.F., Ramsdell, F., 2001. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat. Genet. 27, 68-73.
    [27]
    Burzyn, D., Kuswanto, W., Kolodin, D., Shadrach, J.L., Cerletti, M., Jang, Y., Sefik, E., Tan, T.G., Wagers, A.J., Benoist, C., Mathis, D., 2013. A special population of regulatory T cells potentiates muscle repair. Cell 155, 1282-1295.
    [28]
    Cao, X., Cai, S.F., Fehniger, T.A., Song, J., Collins, L.I., Piwnica-Worms, D.R., Ley, T.J., 2007. Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity 27, 635-646.
    [29]
    Chae, W.J., Henegariu, O., Lee, S.K., Bothwell, A.L., 2006. The mutant leucine-zipper domain impairs both dimerization and suppressive function of Foxp3 in T cells. Proc. Natl. Acad. Sci. U. S. A. 103, 9631-9636.
    [30]
    Charbonnier, L.M., Cui, Y., Stephen-Victor, E., Harb, H., Lopez, D., Bleesing, J.J., Garcia-Lloret, M.I., Chen, K., Ozen, A., Carmeliet, P., Li, M.O., Pellegrini, M., Chatila, T.A., 2019. Functional reprogramming of regulatory T cells in the absence of Foxp3. Nat. Immunol. 20, 1208-1219.
    [31]
    Chen, Z., Barbi, J., Bu, S., Yang, H.Y., Li, Z., Gao, Y., Jinasena, D., Fu, J., Lin, F., Chen, C., Zhang, J., Yu, N., Li, X., Shan, Z., Nie, J., Gao, Z., Tian, H., Li, Y., Yao, Z., Zheng, Y., Park, B.V., Pan, Z., Zhang, J., Dang, E., Li, Z., Wang, H., Luo, W., Li, L., Semenza, G.L., Zheng, S.G., Loser, K., Tsun, A., Greene, M.I., Pardoll, D.M., Pan, F., Li, B., 2013. The ubiquitin ligase Stub1 negatively modulates regulatory T cell suppressive activity by promoting degradation of the transcription factor Foxp3. Immunity 39, 272-285.
    [32]
    Chong, M.M., Rasmussen, J.P., Rudensky, A.Y., Littman, D.R., 2008. The RNAseIII enzyme Drosha is critical in T cells for preventing lethal inflammatory disease. J. Exp. Med. 205, 2005-2017.
    [33]
    Chunder, N., Wang, L., Chen, C., Hancock, W.W., Wells, A.D., 2012. Cyclin-dependent kinase 2 controls peripheral immune tolerance. J. Immunol. 189, 5659-5666.
    [34]
    Cipolletta, D., Feuerer, M., Li, A., Kamei, N., Lee, J., Shoelson, S.E., Benoist, C., Mathis, D., 2012. PPAR-gamma is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 486, 549-553.
    [35]
    Collison, L.W., Workman, C.J., Kuo, T.T., Boyd, K., Wang, Y., Vignali, K.M., Cross, R., Sehy, D., Blumberg, R.S., Vignali, D.A., 2007. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 450, 566-569.
    [36]
    Das, L., Levine, A.D., 2008. TGF-beta inhibits IL-2 production and promotes cell cycle arrest in TCR-activated effector/memory T cells in the presence of sustained TCR signal transduction. J. Immunol. 180, 1490-1498.
    [37]
    Dawson, N.A.J., Vent-Schmidt, J., Levings, M.K., 2017. Engineered tolerance: tailoring development, function, and antigen-specificity of regulatory T cells. Front. Immunol. 8, 1460.
    [38]
    Deaglio, S., Dwyer, K.M., Gao, W., Friedman, D., Usheva, A., Erat, A., Chen, J.F., Enjyoji, K., Linden, J., Oukka, M., Kuchroo, V.K., Strom, T.B., Robson, S.C., 2007. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med. 204, 1257-1265.
    [39]
    Di Nunzio, S., Cecconi, M., Passerini, L., McMurchy, A.N., Baron, U., Turbachova, I., Vignola, S., Valencic, E., Tommasini, A., Junker, A., Cazzola, G., Olek, S., Levings, M.K., Perroni, L., Roncarolo, M.G., Bacchetta, R., 2009. Wild-type FOXP3 is selectively active in CD4+CD25(hi) regulatory T cells of healthy female carriers of different FOXP3 mutations. Blood 114, 4138-4141.
    [40]
    Floess, S., Freyer, J., Siewert, C., Baron, U., Olek, S., Polansky, J., Schlawe, K., Chang, H.D., Bopp, T., Schmitt, E., Klein-Hessling, S., Serfling, E., Hamann, A., Huehn, J., 2007. Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol. 5, e38.
    [41]
    Frimpong-Boateng, K., van Rooijen, N., Geiben-Lynn, R., 2010. Regulatory T cells suppress natural killer cells during plasmid DNA vaccination in mice, blunting the CD8+ T cell immune response by the cytokine TGFbeta. PloS One 5, e12281.
    [42]
    Frith, K., Joly, A.L., Ma, C.S., Tangye, S.G., Lohse, Z., Seitz, C., Verge, C.F., Andersson, J., Gray, P., 2019. The FOXP3Delta2 isoform supports Treg cell development and protects against severe IPEX syndrome. J. Allergy Clin. Immunol..
    [43]
    Fuchizawa, T., Adachi, Y., Ito, Y., Higashiyama, H., Kanegane, H., Futatani, T., Kobayashi, I., Kamachi, Y., Sakamoto, T., Tsuge, I., Tanaka, H., Banham, A.H., Ochs, H.D., Miyawaki, T., 2007. Developmental changes of FOXP3-expressing CD4+CD25+ regulatory T cells and their impairment in patients with FOXP3 gene mutations. Clin. Immunol. 125, 237-246.
    [44]
    Gambineri, E., Ciullini Mannurita, S., Hagin, D., Vignoli, M., Anover-Sombke, S., DeBoer, S., Segundo, G.R.S., Allenspach, E.J., Favre, C., Ochs, H.D., Torgerson, T.R., 2018. Clinical, immunological, and molecular heterogeneity of 173 patients with the phenotype of immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome. Front. Immunol. 9, 2411.
    [45]
    Gavin, M.A., Rasmussen, J.P., Fontenot, J.D., Vasta, V., Manganiello, V.C., Beavo, J.A., Rudensky, A.Y., 2007. Foxp3-dependent programme of regulatory T-cell differentiation. Nature 445, 771-775.
    [46]
    Ge, T., Wang, Y., Che, Y., Xiao, Y., Zhang, T., 2017. Atypical late-onset immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome with intractable diarrhea: a case report. Front. Pediatr. 5, 267.
    [47]
    Genovese, P., Schiroli, G., Escobar, G., Tomaso, T.D., Firrito, C., Calabria, A., Moi, D., Mazzieri, R., Bonini, C., Holmes, M.C., Gregory, P.D., van der Burg, M., Gentner, B., Montini, E., Lombardo, A., Naldini, L., 2014. Targeted genome editing in human repopulating haematopoietic stem cells. Nature 510, 235-240.
    [48]
    Godfrey, V.L., Wilkinson, J.E., Russell, L.B., 1991. X-linked lymphoreticular disease in the scurfy (sf) mutant mouse. Am. J. Pathol. 138, 1379-1387.
    [49]
    Halabi-Tawil, M., Ruemmele, F.M., Fraitag, S., Rieux-Laucat, F., Neven, B., Brousse, N., De Prost, Y., Fischer, A., Goulet, O., Bodemer, C., 2009. Cutaneous manifestations of immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome. Br. J. Dermatol. 160, 645-651.
    [50]
    Hatzimichael, E., Tuthill, M., 2010. Hematopoietic stem cell transplantation. Stem Cells Cloning 3, 105-117.
    [51]
    Hori, S., Nomura, T., Sakaguchi, S., 2003. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057-1061.
    [52]
    Huang, C.T., Workman, C.J., Flies, D., Pan, X., Marson, A.L., Zhou, G., Hipkiss, E.L., Ravi, S., Kowalski, J., Levitsky, H.I., Powell, J.D., Pardoll, D.M., Drake, C.G., Vignali, D.A., 2004. Role of LAG-3 in regulatory T cells. Immunity 21, 503-513.
    [53]
    Huang, J., Wang, L., Dahiya, S., Beier, U.H., Han, R., Samanta, A., Bergman, J., Sotomayor, E.M., Seto, E., Kozikowski, A.P., Hancock, W.W., 2017. Histone/protein deacetylase 11 targeting promotes Foxp3+ Treg function. Sci. Rep. 7, 8626.
    [54]
    Huehn, J., Polansky, J.K., Hamann, A., 2009. Epigenetic control of FOXP3 expression: the key to a stable regulatory T-cell lineage? Nat. Rev. Immunol. 9, 83-89.
    [55]
    Hwang, J.L., Park, S.Y., Ye, H., Sanyoura, M., Pastore, A.N., Carmody, D., Del Gaudio, D., Wilson, J.F., Hanis, C.L., Liu, X., Atzmon, G., Glaser, B., Philipson, L.H., Greeley, S.A.W., Consortium, T.D.-G., 2018. FOXP3 mutations causing early-onset insulin-requiring diabetes but without other features of immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome. Pediatr. Diabetes 19, 388-392.
    [56]
    Ichiyama, K., Yoshida, H., Wakabayashi, Y., Chinen, T., Saeki, K., Nakaya, M., Takaesu, G., Hori, S., Yoshimura, A., Kobayashi, T., 2008. Foxp3 inhibits RORgammat-mediated IL-17A mRNA transcription through direct interaction with RORgammat. J. Biol. Chem. 283, 17003-17008.
    [57]
    Ito, M., Komai, K., Mise-Omata, S., Iizuka-Koga, M., Noguchi, Y., Kondo, T., Sakai, R., Matsuo, K., Nakayama, T., Yoshie, O., Nakatsukasa, H., Chikuma, S., Shichita, T., Yoshimura, A., 2019. Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery. Nature 565, 246-250.
    [58]
    Jiang, R., Tang, J., Chen, Y., Deng, L., Ji, J., Xie, Y., Wang, K., Jia, W., Chu, W.M., Sun, B., 2017. The long noncoding RNA lnc-EGFR stimulates T-regulatory cells differentiation thus promoting hepatocellular carcinoma immune evasion. Nat. Commun. 8, 15129.
    [59]
    Joly, A.L., Liu, S., Dahlberg, C.I., Mailer, R.K., Westerberg, L.S., Andersson, J., 2015. Foxp3 lacking exons 2 and 7 is unable to confer suppressive ability to regulatory T cells in vivo. J. Autoimmun. 63, 23-30.
    [60]
    Joly, A.L., Seitz, C., Liu, S., Kuznetsov, N.V., Gertow, K., Westerberg, L.S., Paulsson-Berne, G., Hansson, G.K., Andersson, J., 2018. Alternative splicing of FOXP3 controls regulatory T cell effector functions and is associated with human atherosclerotic plaque stability. Circ. Res. 122, 1385-1394.
    [61]
    Josefowicz, S.Z., Lu, L.F., Rudensky, A.Y., 2012. Regulatory T cells: mechanisms of differentiation and function. Annu. Rev. Immunol. 30, 531-564.
    [62]
    Kanangat, S., Blair, P., Reddy, R., Daheshia, M., Godfrey, V., Rouse, B.T., Wilkinson, E., 1996. Disease in the scurfy (sf) mouse is associated with overexpression of cytokine genes. Eur. J. Immunol. 26, 161-165.
    [63]
    Khattri, R., Cox, T., Yasayko, S.A., Ramsdell, F., 2003. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat. Immunol. 4, 337-342.
    [64]
    Kim, H.P., Leonard, W.J., 2007. CREB/ATF-dependent T cell receptor-induced FoxP3 gene expression: a role for DNA methylation. J. Exp. Med. 204, 1543-1551.
    [65]
    Kim, J.M., Rudensky, A., 2006. The role of the transcription factor Foxp3 in the development of regulatory T cells. Immunol. Rev. 212, 86-98.
    [66]
    Kitagawa, Y., Ohkura, N., Sakaguchi, S., 2015. Epigenetic control of thymic Treg-cell development. Eur. J. Immunol. 45, 11-16.
    [67]
    Kitagawa, Y., Ohkura, N., Kidani, Y., Vandenbon, A., Hirota, K., Kawakami, R., Yasuda, K., Motooka, D., Nakamura, S., Kondo, M., Taniuchi, I., Kohwi-Shigematsu, T., Sakaguchi, S., 2017. Guidance of regulatory T cell development by Satb1-dependent super-enhancer establishment. Nat. Immunol. 18, 173-183.
    [68]
    Kobayashi, I., Shiari, R., Yamada, M., Kawamura, N., Okano, M., Yara, A., Iguchi, A., Ishikawa, N., Ariga, T., Sakiyama, Y., Ochs, H.D., Kobayashi, K., 2001. Novel mutations of FOXP3 in two Japanese patients with immune dysregulation, polyendocrinopathy, enteropathy, X linked syndrome (IPEX). J. Med. Genet. 38, 874-876.
    [69]
    Kohn, D.B., 2018. Gene therapy for blood diseases. Curr. Opin. Biotechnol. 60, 39-45.
    [70]
    Konopacki, C., Pritykin, Y., Rubtsov, Y., Leslie, C.S., Rudensky, A.Y., 2019. Transcription factor Foxp1 regulates Foxp3 chromatin binding and coordinates regulatory T cell function. Nat. Immunol. 20, 232-242.
    [71]
    Lal, G., Bromberg, J.S., 2009. Epigenetic mechanisms of regulation of Foxp3 expression. Blood 114, 3727-3735.
    [72]
    Lal, G., Zhang, N., van der Touw, W., Ding, Y., Ju, W., Bottinger, E.P., Reid, S.P., Levy, D.E., Bromberg, J.S., 2009. Epigenetic regulation of Foxp3 expression in regulatory T cells by DNA methylation. J. Immunol. 182, 259-273.
    [73]
    Lampasona, V., Passerini, L., Barzaghi, F., Lombardoni, C., Bazzigaluppi, E., Brigatti, C., Bacchetta, R., Bosi, E., 2013. Autoantibodies to harmonin and villin are diagnostic markers in children with IPEX syndrome. PloS One 8, e78664.
    [74]
    Li, B., Samanta, A., Song, X., Iacono, K.T., Bembas, K., Tao, R., Basu, S., Riley, J.L., Hancock, W.W., Shen, Y., Saouaf, S.J., Greene, M.I., 2007a. FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression. Proc. Natl. Acad. Sci. U. S. A. 104, 4571-4576.
    [75]
    Li, B., Samanta, A., Song, X., Iacono, K.T., Brennan, P., Chatila, T.A., Roncador, G., Banham, A.H., Riley, J.L., Wang, Q., Shen, Y., Saouaf, S.J., Greene, M.I., 2007b. FOXP3 is a homo-oligomer and a component of a supramolecular regulatory complex disabled in the human XLAAD/IPEX autoimmune disease. Int. Immunol. 19, 825-835.
    [76]
    Li, M.O., Wan, Y.Y., Flavell, R.A., 2007c. T cell-produced transforming growth factor-beta1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation. Immunity 26, 579-591.
    [77]
    Li, Z., Lin, F., Zhuo, C., Deng, G., Chen, Z., Yin, S., Gao, Z., Piccioni, M., Tsun, A., Cai, S., Zheng, S.G., Zhang, Y., Li, B., 2014. PIM1 kinase phosphorylates the human transcription factor FOXP3 at serine 422 to negatively regulate its activity under inflammation. J. Biol. Chem. 289, 26872-26881.
    [78]
    Li, Y., Lu, Y., Wang, S., Han, Z., Zhu, F., Ni, Y., Liang, R., Zhang, Y., Leng, Q., Wei, G., Shi, G., Zhu, R., Li, D., Wang, H., Zheng, S.G., Xu, H., Tsun, A., Li, B., 2016. USP21 prevents the generation of T-helper-1-like Treg cells. Nat. Commun. 7, 13559.
    [79]
    Lin, W., Haribhai, D., Relland, L.M., Truong, N., Carlson, M.R., Williams, C.B., Chatila, T.A., 2007. Regulatory T cell development in the absence of functional Foxp3. Nat. Immunol. 8, 359-368.
    [80]
    Liston, A., Lu, L.F., O'Carroll, D., Tarakhovsky, A., Rudensky, A.Y., 2008. Dicer-dependent microRNA pathway safeguards regulatory T cell function. J. Exp. Med. 205, 1993-2004.
    [81]
    Liu, X., Robinson, S.N., Setoyama, T., Tung, S.S., D'Abundo, L., Shah, M.Y., Yang, H., Yvon, E., Shah, N., Yang, H., Konopleva, M., Garcia-Manero, G., McNiece, I., Rezvani, K., Calin, G.A., Shpall, E.J., Parmar, S., 2014. FOXP3 is a direct target of miR15a/16 in umbilical cord blood regulatory T cells. Bone Marrow Transplant. 49, 793-799.
    [82]
    Lopes, J.E., Torgerson, T.R., Schubert, L.A., Anover, S.D., Ocheltree, E.L., Ochs, H.D., Ziegler, S.F., 2006. Analysis of FOXP3 reveals multiple domains required for its function as a transcriptional repressor. J. Immunol. 177, 3133-3142.
    [83]
    Lopez, S.I., Ciocca, M., Oleastro, M., Cuarterolo, M.L., Rocca, A., de Davila, M.T., Roy, A., Fernandez, M.C., Nievas, E., Bosaleh, A., Torgerson, T.R., Ruiz, J.A., 2011. Autoimmune hepatitis type 2 in a child with IPEX syndrome. J. Pediatr. Gastroenterol. Nutr. 53, 690-693.
    [84]
    Louie, R.J., Tan, Q.K., Gilner, J.B., Rogers, R.C., Younge, N., Wechsler, S.B., McDonald, M.T., Gordon, B., Saski, C.A., Jones, J.R., Chapman, S.J., Stevenson, R.E., Sleasman, J.W., Friez, M.J., 2017. Novel pathogenic variants in FOXP3 in fetuses with echogenic bowel and skin desquamation identified by ultrasound. Am. J. Med. Genet. 173, 1219-1225.
    [85]
    Lu, L.F., Thai, T.H., Calado, D.P., Chaudhry, A., Kubo, M., Tanaka, K., Loeb, G.B., Lee, H., Yoshimura, A., Rajewsky, K., Rudensky, A.Y., 2009. Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity 30, 80-91.
    [86]
    Lucas, K.G., Ungar, D., Comito, M., Bayerl, M., Groh, B., 2007. Submyeloablative cord blood transplantation corrects clinical defects seen in IPEX syndrome. Bone Marrow Transplant. 39, 55-56.
    [87]
    Luo, X., Nie, J., Wang, S., Chen, Z., Chen, W., Li, D., Hu, H., Li, B., 2015. Poly(ADP-ribosyl)ation of FOXP3 protein mediated by PARP-1 protein regulates the function of regulatory T cells. J. Biol. Chem. 290, 28675-28682.
    [88]
    Mailer, R.K., Falk, K., Rotzschke, O., 2009. Absence of leucine zipper in the natural FOXP3Delta2Delta7 isoform does not affect dimerization but abrogates suppressive capacity. PloS One 4, e6104.
    [89]
    Mailer, R.K., Joly, A.L., Liu, S., Elias, S., Tegner, J., Andersson, J., 2015. IL-1beta promotes Th17 differentiation by inducing alternative splicing of FOXP3. Sci. Rep. 5, 14674.
    [90]
    Nagai, Y., Ji, M.Q., Zhu, F., Xiao, Y., Tanaka, Y., Kambayashi, T., Fujimoto, S., Goldberg, M.M., Zhang, H., Li, B., Ohtani, T., Greene, M.I., 2019. PRMT5 Associates with the FOXP3 homomer and when disabled enhances targeted p185(erbB2/neu) tumor immunotherapy. Front. Immunol. 10, 174.
    [91]
    Nagata, D.E., Ting, H.A., Cavassani, K.A., Schaller, M.A., Mukherjee, S., Ptaschinski, C., Kunkel, S.L., Lukacs, N.W., 2015. Epigenetic control of Foxp3 by SMYD3 H3K4 histone methyltransferase controls iTreg development and regulates pathogenic T-cell responses during pulmonary viral infection. Mucosal Immunol. 8, 1131-1143.
    [92]
    Ni, X., Kou, W., Gu, J., Wei, P., Wu, X., Peng, H., Tao, J., Yan, W., Yang, X., Lebid, A., Park, B.V., Chen, Z., Tian, Y., Fu, J., Newman, S., Wang, X., Shen, H., Li, B., Blazar, B.R., Wang, X., Barbi, J., Pan, F., Lu, L., 2019. TRAF6 directs FOXP3 localization and facilitates regulatory T-cell function through K63-linked ubiquitination. EMBO J. 38.
    [93]
    Nie, H., Zheng, Y., Li, R., Guo, T.B., He, D., Fang, L., Liu, X., Xiao, L., Chen, X., Wan, B., Chin, Y.E., Zhang, J.Z., 2013. Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-alpha in rheumatoid arthritis. Nat. Med. 19, 322-328.
    [94]
    Nieves, D.S., Phipps, R.P., Pollock, S.J., Ochs, H.D., Zhu, Q., Scott, G.A., Ryan, C.K., Kobayashi, I., Rossi, T.M., Goldsmith, L.A., 2004. Dermatologic and immunologic findings in the immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome. Arch. Dermatol. 140, 466-472.
    [95]
    Okoye, I.S., Coomes, S.M., Pelly, V.S., Czieso, S., Papayannopoulos, V., Tolmachova, T., Seabra, M.C., Wilson, M.S., 2014. MicroRNA-containing T-regulatory-cell-derived exosomes suppress pathogenic T helper 1 cells. Immunity 41, 89-103.
    [96]
    Ono, M., Yaguchi, H., Ohkura, N., Kitabayashi, I., Nagamura, Y., Nomura, T., Miyachi, Y., Tsukada, T., Sakaguchi, S., 2007. Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 446, 685-689.
    [97]
    Otsubo, K., Kanegane, H., Kamachi, Y., Kobayashi, I., Tsuge, I., Imaizumi, M., Sasahara, Y., Hayakawa, A., Nozu, K., Iijima, K., Ito, S., Horikawa, R., Nagai, Y., Takatsu, K., Mori, H., Ochs, H.D., Miyawaki, T., 2011. Identification of FOXP3-negative regulatory T-like (CD4(+)CD25(+)CD127(low)) cells in patients with immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome. Clin. Immunol. 141, 111-120.
    [98]
    Passerini, L., Rossi Mel, E., Sartirana, C., Fousteri, G., Bondanza, A., Naldini, L., Roncarolo, M.G., Bacchetta, R., 2013. CD4+T cells from IPEX patients convert into functional and stable regulatory T cells by FOXP3 gene transfer. Sci. Transl. Med. 5, 215ra174.
    [99]
    Passerini, L., Santoni de Sio, F.R., Porteus, M.H., Bacchetta, R., 2014. Gene/cell therapy approaches for immune dysregulation polyendocrinopathy enteropathy X-linked syndrome. Curr. Gene Ther. 14, 422-428.
    [100]
    Powell, B.R., Buist, N.R., Stenzel, P., 1982. An X-linked syndrome of diarrhea, polyendocrinopathy, and fatal infection in infancy. J. Pediatr. 100, 731-737.
    [101]
    Puccetti, P., Grohmann, U., 2007. Ido and regulatory T cells: a role for reverse signalling and non-canonical NF-kappaB activation. Nat. Rev. Immunol. 7, 817-823.
    [102]
    Qiao, Y.Q., Huang, M.L., Xu, A.T., Zhao, D., Ran, Z.H., Shen, J., 2013. LncRNA DQ786243 affects Treg related CREB and Foxp3 expression in Crohn's disease. J. Biomed. Sci. 20, 87.
    [103]
    Qin, A., Wen, Z., Zhou, Y., Li, Y., Li, Y., Luo, J., Ren, T., Xu, L., 2013. MicroRNA-126 regulates the induction and function of CD4+ Foxp3+ regulatory T cells through PI3K/AKT pathway. J. Cell Mol. Med. 17, 252-264.
    [104]
    Rae, W., Gao, Y., Bunyan, D., Holden, S., Gilmour, K., Patel, S., Wellesley, D., Williams, A., 2015. A novel FOXP3 mutation causing fetal akinesia and recurrent male miscarriages. Clin. Immunol. 161, 284-285.
    [105]
    Ren, X., Ye, F., Jiang, Z., Chu, Y., Xiong, S., Wang, Y., 2007. Involvement of cellular death in TRAIL/DR5-dependent suppression induced by CD4+CD25+regulatory T cells. Cell Death Differ. 14, 2076-2084.
    [106]
    Rubio-Cabezas, O., Minton, J.A., Caswell, R., Shield, J.P., Deiss, D., Sumnik, Z., Cayssials, A., Herr, M., Loew, A., Lewis, V., Ellard, S., Hattersley, A.T., 2009. Clinical heterogeneity in patients with FOXP3 mutations presenting with permanent neonatal diabetes. Diabetes Care 32, 111-116.
    [107]
    Rubtsov, Y.P., Rasmussen, J.P., Chi, E.Y., Fontenot, J., Castelli, L., Ye, X., Treuting, P., Siewe, L., Roers, A., Henderson, W.R., Jr., Muller, W., Rudensky, A.Y., 2008. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity 28, 546-558.
    [108]
    Sakaguchi, S., Yamaguchi, T., Nomura, T., Ono, M., 2008. Regulatory T cells and immune tolerance. Cell 133, 775-787.
    [109]
    Shevach, E.M., Thornton, A.M., 2014. tTregs, pTregs, and iTregs: similarities and differences. Immunol. Rev. 259, 88-102.
    [110]
    Song, X., Li, B., Xiao, Y., Chen, C., Wang, Q., Liu, Y., Berezov, A., Xu, C., Gao, Y., Li, Z., Wu, S.L., Cai, Z., Zhang, H., Karger, B.L., Hancock, W.W., Wells, A.D., Zhou, Z., Greene, M.I., 2012. Structural and biological features of FOXP3 dimerization relevant to regulatory T cell function. Cell Rep. 1, 665-675.
    [111]
    Tan, Q.K.G., Louie, R.J., Sleasman, J.W., 1993. IPEX syndrome, in: Adam, M.P., Ardinger, H.H., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Stephens, K., Amemiya, A. (Eds.), GeneReviews((R)), Seattle (WA).
    [112]
    Tone, Y., Furuuchi, K., Kojima, Y., Tykocinski, M.L., Greene, M.I., Tone, M., 2008. Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer. Nat. Immunol. 9, 194-202.
    [113]
    Torgerson, T.R., Linane, A., Moes, N., Anover, S., Mateo, V., Rieux-Laucat, F., Hermine, O., Vijay, S., Gambineri, E., Cerf-Bensussan, N., Fischer, A., Ochs, H.D., Goulet, O., Ruemmele, F.M., 2007. Severe food allergy as a variant of IPEX syndrome caused by a deletion in a noncoding region of the FOXP3 gene. Gastroenterology 132, 1705-1717.
    [114]
    van Loosdregt, J., Vercoulen, Y., Guichelaar, T., Gent, Y.Y., Beekman, J.M., van Beekum, O., Brenkman, A.B., Hijnen, D.J., Mutis, T., Kalkhoven, E., Prakken, B.J., Coffer, P.J., 2010. Regulation of Treg functionality by acetylation-mediated Foxp3 protein stabilization. Blood 115, 965-974.
    [115]
    Vang, A.G., Housley, W., Dong, H., Basole, C., Ben-Sasson, S.Z., Kream, B.E., Epstein, P.M., Clark, R.B., Brocke, S., 2013. Regulatory T-cells and cAMP suppress effector T-cells independently of PKA-CREM/ICER: a potential role for Epac. Biochem. J. 456, 463-473.
    [116]
    Walker, L.S., 2013. Treg and CTLA-4: two intertwining pathways to immune tolerance. J. Autoimmun. 45, 49-57.
    [117]
    Warth, S.C., Hoefig, K.P., Hiekel, A., Schallenberg, S., Jovanovic, K., Klein, L., Kretschmer, K., Ansel, K.M., Heissmeyer, V., 2015. Induced miR-99a expression represses Mtor cooperatively with miR-150 to promote regulatory T-cell differentiation. EMBO J. 34, 1195-1213.
    [118]
    Wei, J., Nduom, E.K., Kong, L.Y., Hashimoto, Y., Xu, S., Gabrusiewicz, K., Ling, X., Huang, N., Qiao, W., Zhou, S., Ivan, C., Fuller, G.N., Gilbert, M.R., Overwijk, W., Calin, G.A., Heimberger, A.B., 2016. MiR-138 exerts anti-glioma efficacy by targeting immune checkpoints. Neuro Oncol. 18, 639-648.
    [119]
    Wildin, R.S., Freitas, A., 2005. IPEX and FOXP3: clinical and research perspectives. J. Autoimmun. 25 Suppl. l, 56-62.
    [120]
    Wildin, R.S., Smyk-Pearson, S., Filipovich, A.H., 2002. Clinical and molecular features of the immunodysregulation, polyendocrinopathy, enteropathy, X linked (IPEX) syndrome. J. Med. Genet. 39, 537-545.
    [121]
    Wing, K., Onishi, Y., Prieto-Martin, P., Yamaguchi, T., Miyara, M., Fehervari, Z., Nomura, T., Sakaguchi, S., 2008. CTLA-4 control over Foxp3+ regulatory T cell function. Science 322, 271-275.
    [122]
    Wu, Y., Borde, M., Heissmeyer, V., Feuerer, M., Lapan, A.D., Stroud, J.C., Bates, D.L., Guo, L., Han, A., Ziegler, S.F., Mathis, D., Benoist, C., Chen, L., Rao, A., 2006. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 126, 375-387.
    [123]
    Yang, H.Y., Barbi, J., Wu, C.Y., Zheng, Y., Vignali, P.D., Wu, X., Tao, J.H., Park, B.V., Bandara, S., Novack, L., Ni, X., Yang, X., Chang, K.Y., Wu, R.C., Zhang, J., Yang, C.W., Pardoll, D.M., Li, H., Pan, F., 2016. MicroRNA-17 modulates regulatory T cell function by targeting Co-regulators of the Foxp3 transcription factor. Immunity 45, 83-93.
    [124]
    Yu, A., Zhu, L., Altman, N.H., Malek, T.R., 2009. A low interleukin-2 receptor signaling threshold supports the development and homeostasis of T regulatory cells. Immunity 30, 204-217.
    [125]
    Zemmour, D., Pratama, A., Loughhead, S.M., Mathis, D., Benoist, C., 2017. Flicr, a long noncoding RNA, modulates Foxp3 expression and autoimmunity. Proc. Natl. Acad. Sci. U. S. A. 114, E3472-E3480.
    [126]
    Zhan, H., Sinclair, J., Adams, S., Cale, C.M., Murch, S., Perroni, L., Davies, G., Amrolia, P., Qasim, W., 2008. Immune reconstitution and recovery of FOXP3 (forkhead box P3)-expressing T cells after transplantation for IPEX (immune dysregulation, polyendocrinopathy, enteropathy, X-linked) syndrome. Pediatrics 121, e998-e1002.
    [127]
    Zheng, Y., Josefowicz, S., Chaudhry, A., Peng, X.P., Forbush, K., Rudensky, A.Y., 2010. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463, 808-812.
    [128]
    Zhou, L., Lopes, J.E., Chong, M.M., Ivanov, II, Min, R., Victora, G.D., Shen, Y., Du, J., Rubtsov, Y.P., Rudensky, A.Y., Ziegler, S.F., Littman, D.R., 2008a. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature 453, 236-240.
    [129]
    Zhou, X., Jeker, L.T., Fife, B.T., Zhu, S., Anderson, M.S., McManus, M.T., Bluestone, J.A., 2008b. Selective miRNA disruption in T reg cells leads to uncontrolled autoimmunity. J. Exp. Med. 205, 1983-1991.
    [130]
    Zhou, X., Bailey-Bucktrout, S.L., Jeker, L.T., Penaranda, C., Martinez-Llordella, M., Ashby, M., Nakayama, M., Rosenthal, W., Bluestone, J.A., 2009. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat. Immunol. 10, 1000-1007.
    [131]
    Zhu, F., Yi, G., Liu, X., Zhu, F., Zhao, A., Wang, A., Zhu, R., Chen, Z., Zhao, B., Fang, S., Yu, X., Lin, R., Liang, R., Li, D., Zhao, W., Zhang, Z., Guo, W., Zhang, S., Ge, S., Fan, X., Zhao, G., Li, B., 2018. Ring finger protein 31-mediated atypical ubiquitination stabilizes forkhead box P3 and thereby stimulates regulatory T-cell function. J. Biol. Chem. 293, 20099-20111.
    [132]
    Ziegler, S.F., 2006. FOXP3: of mice and men. Annu. Rev. Immunol. 24, 209-226.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures (3)

    Article Metrics

    Article views (98) PDF downloads (2) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return