5.9
CiteScore
5.9
Impact Factor
Volume 46 Issue 11
Nov.  2019
Turn off MathJax
Article Contents

Advances in detecting and reducing off-target effects generated by CRISPR-mediated genome editing

doi: 10.1016/j.jgg.2019.11.002
More Information
  • Corresponding author: E-mail address: wanjinchen75@fjmu.edu.cn (Wanjin Chen); E-mail address: erweizuo@163.com (Erwei Zuo); E-mail address: huiyang@ion.ac.cn (Hui Yang)
  • Received Date: 2019-10-07
  • Accepted Date: 2019-11-14
  • Rev Recd Date: 2019-11-05
  • Available Online: 2019-11-22
  • Publish Date: 2019-11-20
  • CRISPR-mediated genome editing is a revolutionary technology for genome manipulation that uses the CRISPR-Cas systems and base editors. Currently, poor efficiency and off-target problems have impeded the application of CRISPR systems. The on-target efficiency has been improved in several advanced versions of CRISPR systems, whereas the off-target detection still remains a key challenge. Here, we outline the different versions of CRISPR systems and off-target detection strategies, discuss the merits and limitations of off-target detection methods, and provide potential implications for further gene editing research.
  • These authors contributed equally.
  • loading
  • [1]
    Cameron, P., Fuller, C.K., Donohoue, P.D., Jones, B.N., Thompson, M.S., Carter, M.M., Gradia, S., Vidal, B., Garner, E., Slorach, E.M., Lau, E., Banh, L.M., Lied, A.M., Edwards, L.S., Settle, A.H., Capurso, D., Llaca, V., Deschamps, S., Cigan, M., Young, J.K., May, A.P., 2017. Mapping the genomic landscape of CRISPR-Cas9 cleavage. Nat. Methods 14, 600-606.
    [2]
    Casini, A., Olivieri, M., Petris, G., Montagna, C., Reginato, G., Maule, G., Lorenzin, F., Prandi, D., Romanel, A., Demichelis, F., Inga, A., Cereseto, A., 2018. A highly specific SpCas9 variant is identified by in vivo screening in yeast. Nat. Biotechnol.ure Biotechnology 36, 265-+.
    [3]
    Cencic, R., Miura, H., Malina, A., Robert, F., Ethier, S., Schmeing, T.M., Dostie, J., Pelletier, J., 2014. Protospacer adjacent motif (PAM)-distal sequences engage CRISPR Cas9 DNA target cleavage. PLoS One 9, e109213.
    [4]
    Chen, J.S., Dagdas, Y.S., Kleinstiver, B.P., Welch, M.M., Sousa, A.A., Harrington, L.B., Sternberg, S.H., Joung, J.K., Yildiz, A., Doudna, J.A., 2017. Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature 550, 407-+.
    [5]
    Cho, S.W., Kim, S., Kim, Y., Kweon, J., Kim, H.S., Bae, S., Kim, J.S., 2014. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. 24, 132-141.
    [6]
    Choi, P.S., Meyerson, M., 2014. Targeted genomic rearrangements using CRISPR/Cas technology. Nat. Commun. Commun 5, 3728.
    [7]
    Cong, L., Ran, F.A., Cox, D., Lin, S.L., Barretto, R., Habib, N., Hsu, P.D., Wu, X.B., Jiang, W.Y., Marraffini, L.A., Zhang, F., 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823.
    [8]
    Conticello, S.G., 2008. The AID/APOBEC family of nucleic acid . Genome Biol. 9.
    [9]
    Couvin, D., Bernheim, A., Toffano-Nioche, C., Touchon, M., Michalik, J., Neron, B., Rocha, E.P.C., Vergnaud, G., Gautheret, D., Pourcel, C., 2018. , an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res. 46, W246-W251.
    [10]
    Cromwell, C.R., Sung, K., Park, J., Krysler, A.R., Jovel, J., Kim, S.K., Hubbard, B.P., 2018. Incorporation of bridged nucleic acids into CRISPR RNAs improves Cas9 endonuclease specificity. Nat. Commun. Commun 9.
    [11]
    Crosetto, N., Mitra, A., Silva, M.J., Bienko, M., Dojer, N., Wang, Q., Karaca, E., Chiarle, R., Skrzypczak, M., Ginalski, K., Pasero, P., Rowicka, M., Dikic, I., 2013. Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing. Nat. Methods 10, 361-365.
    [12]
    Doench, J.G., Fusi, N., Sullender, M., Hegde, M., Vaimberg, E.W., Donovan, K.F., Smith, I., Tothova, Z., Wilen, C., Orchard, R., Virgin, H.W., Listgarten, J., Root, D.E., 2016. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. Biotechnol 34, 184-191.
    [13]
    Doudna, J.A., Charpentier, E., 2014. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096.
    [14]
    Esvelt, K.M., Carlson, J.C., Liu, D.R., 2011. A system for the continuous directed evolution of biomolecules. Nature 472, 499-503.
    [15]
    Esvelt, K.M., Mali, P., Braff, J.L., Moosburner, M., Yaung, S.J., Church, G.M., 2013. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat. Methods 10, 1116-1121.
    [16]
    Fu, B.X., St Onge, R.P., Fire, A.Z., Smith, J.D., 2016. Distinct patterns of Cas9 mismatch tolerance in vitro and in vivo. Nucleic Acids Res. 44, 5365-5377.
    [17]
    Friedland, A.E., Tzur, Y.B., Esvelt, K.M., Colaiacovo, M.P., Church, G.M., Calarco, J.A., 2013. Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat. Methods 10, 741-743.
    [18]
    Fu, Y., Foden, J.A., Khayter, C., Maeder, M.L., Reyon, D., Joung, J.K., Sander, J.D., 2013. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. Biotechnol 31, 822-826.
    [19]
    Fu, Y., Sander, J.D., Reyon, D., Cascio, V.M., Joung, J.K., 2014. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. Biotechnol 32, 279-284.
    [20]
    Furey, T.S., 2012. ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Nat. Rev. Genet. Rev Genet 13, 840-852.
    [21]
    Gasiunas, G., Barrangou, R., Horvath, P., Siksnys, V., 2012. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. 109, E2579-E2586.
    [22]
    Gaudelli, N.M., Komor, A.C., Rees, H.A., Packer, M.S., Badran, A.H., Bryson, D.I., Liu, D.R., 2017. Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551, 464-471.
    [23]
    Gilbert, L.A., Larson, M.H., Morsut, L., Liu, Z.R., Brar, G.A., Torres, S.E., Stern-Ginossar, N., Brandman, O., Whitehead, E.H., Doudna, J.A., Lim, W.A., Weissman, J.S., Qi, L.S., 2013. CRISPR-mediated odular RNA-guided regulation of transcription in ukaryotes. Cell 154, 442-451.
    [24]
    Grunewald, J., Zhou, R.H., Garcia, S.P., Iyer, S., Lareau, C.A., Aryee, M.J., Joung, J.K., 2019. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature 569, 433-+.
    [25]
    Harris, R.S., Liddament, M.T., 2004. Retroviral restriction by APOBEC proteins. Nat. Rev. Immunol. Rev Immunol 4, 868-877.
    [26]
    Hirano, S., Nishimasu, H., Ishitani, R., Nureki, O., 2016. Structural asis for the altered PAM specificities of engineered CRISPR-as9. Mol. Cell 61, 886-894.
    [27]
    Hou, Z., Zhang, Y., Propson, N.E., Howden, S.E., Chu, L.F., Sontheimer, E.J., Thomson, J.A., 2013. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc. Natl. Acad. Sci. U. S. A. Natl Acad Sci U S A 110, 15644-15649.
    [28]
    Hsu, P.D., Scott, D.A., Weinstein, J.A., Ran, F.A., Konermann, S., Agarwala, V., Li, Y., Fine, E.J., Wu, X., Shalem, O., Cradick, T.J., Marraffini, L.A., Bao, G., Zhang, F., 2013a. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. Biotechnol 31, 827-832.
    [29]
    Hsu, P.D., Scott, D.A., Weinstein, J.A., Ran, F.A., Konermann, S., Agarwala, V., Li, Y.Q., Fine, E.J., Wu, X.B., Shalem, O., Cradick, T.J., Marraffini, L.A., Bao, G., Zhang, F., 2013b. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol.ure Biotechnology 31, 827-+.
    [30]
    Hu, J., Meyers, R.M., Dong, J., Panchakshari, R.A., Alt, F.W., Frock, R.L., 2016. Detecting DNA double-stranded breaks in mammalian genomes by linear amplification-mediated high-throughput genome-wide translocation sequencing. Nat. Protoc. Protoc 11, 853-871.
    [31]
    Hu, J.H., Miller, S.M., Geurts, M.H., Tang, W., Chen, L., Sun, N., Zeina, C.M., Gao, X., Rees, H.A., Lin, Z., Liu, D.R., 2018. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556, 57-63.
    [32]
    Hua, K., Tao, X., Yuan, F., Wang, D., Zhu, J.K., 2018. Precise A.T to G.C base editing in the rice genome. Mol. Plant 11, 627-630.
    [33]
    Hua, K., Tao, X., Zhu, J.K., 2019. Expanding the base editing scope in rice by using Cas9 variants. Plant Biotechnol. J 17, 499-504.
    [34]
    Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., Charpentier, E., 2012. A rogrammable ual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821.
    [35]
    Jin S., Zong Y., Gao Q., Zhu Z., Wang Y., Qin P., Liang C., Wang D., Qiu J.L., Zhang F. and Gao C., Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice, Science 364, 2019, 292-295
    [36]
    Joung, J.K., Sander, J.D., 2013. TALENs: a widely applicable technology for targeted genome editing. Nat. Rev. Mol. Cell Biol. Rev Mol Cell Biol 14, 49-55.
    [37]
    Kim, D., Bae, S., Park, J., Kim, E., Kim, S., Yu, H.R., Hwang, J., Kim, J.I., Kim, J.S., 2015. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat. Methods 12, 237-243, 231 pp. following 243.
    [38]
    Kim, Y.B., Komor, A.C., Levy, J.M., Packer, M.S., Zhao, K.T., Liu, D.R., 2017. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat. Biotechnol. Biotechnol 35, 371-376.
    [39]
    Kleinstiver, B.P., Pattanayak, V., Prew, M.S., Tsai, S.Q., Nguyen, N.T., Zheng, Z., Joung, J.K., 2016. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490-495.
    [40]
    Kleinstiver, B.P., Prew, M.S., Tsai, S.Q., Topkar, V.V., Nguyen, N.T., Zheng, Z., Gonzales, A.P., Li, Z., Peterson, R.T., Yeh, J.R., Aryee, M.J., Joung, J.K., 2015. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523, 481-485.
    [41]
    Kleinstiver, B.P., Sousa, A.A., Walton, R.T., Tak, Y.E., Hsu, J.Y., Clement, K., Welch, M.M., Horng, J.E., Malagon-Lopez, J., Scarfo, I., Maus, M.V., Pinello, L., Aryee, M.J., Joung, J.K., 2019. Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nat. Biotechnol. Biotechnol 37, 276-282.
    [42]
    Koblan, L.W., Doman, J.L., Wilson, C., Levy, J.M., Tay, T., Newby, G.A., Maianti, J.P., Raguram, A., Liu, D.R., 2018. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat. Biotechnol. Biotechnol 36, 843-846.
    [43]
    Komor, A.C., Kim, Y.B., Packer, M.S., Zuris, J.A., Liu, D.R., 2016. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420-424.
    [44]
    Komor, A.C., Zhao, K.T., Packer, M.S., Gaudelli, N.M., Waterbury, A.L., Koblan, L.W., Kim, Y.B., Badran, A.H., Liu, D.R., 2017. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. 3, eaao4774.
    [45]
    Konermann, S., Brigham, M.D., Trevino, A.E., Joung, J., Abudayyeh, O.O., Barcena, C., Hsu, P.D., Habib, N., Gootenberg, J.S., Nishimasu, H., Nureki, O., Zhang, F., 2015. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517, 583-588.
    [46]
    Koo, T., Lee, J., Kim, J.S., 2015. Measuring and reducing off-target activities of rogrammable nucleases including CRISPR-as9. Mol. Cells 38, 475-481.
    [47]
    Kulcsar, P.I., Talas, A., Huszar, K., Ligeti, Z., Toth, E., Weinhardt, N., Fodor, E., Welker, E., 2017. Crossing enhanced and high fidelity SpCas9 nucleases to optimize specificity and cleavage. Genome Biol. 18.
    [48]
    Kuscu, C., Arslan, S., Singh, R., Thorpe, J., Adli, M., 2014. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat. Biotechnol. Biotechnol 32, 677-683.
    [49]
    Lazzarotto, C.R., Nguyen, N.T., Tang, X., Malagon-Lopez, J., Guo, J.A., Aryee, M.J., Joung, J.K., Tsai, S.Q., 2018. Defining CRISPR-Cas9 genome-wide nuclease activities with CIRCLE-seq. Nat. Protoc. Protoc 13, 2615-2642.
    [50]
    Lee, J.K., Jeong, E., Lee, J., Jung, M., Shin, E., Kim, Y.H., Lee, K., Jung, I., Kim, D., Kim, S., Kim, J.S., 2018. Directed evolution of CRISPR-Cas9 to increase its specificity. Nat. Commun. Commun 9.
    [51]
    Li, X., Wang, Y., Liu, Y., Yang, B., Wang, X., Wei, J., Lu, Z., Zhang, Y., Wu, J., Huang, X., Yang, L., Chen, J., 2018. Base editing with a Cpf1-cytidine deaminase fusion. Nat. Biotechnol. Biotechnol 36, 324-327.
    [52]
    Lone, B.A., Karna, S.K.L., Ahmad, F., Shahi, N., Pokharel, Y.R., 2018. CRISPR/Cas9 system: a bacterial ailor for genomic engineering. 2018, 3797214.
    [53]
    Maeder, M.L., Linder, S.J., Cascio, V.M., Fu, Y., Ho, Q.H., Joung, J.K., 2013. CRISPR RNA-guided activation of endogenous human genes. Nat. Methods 10, 977-979.
    [54]
    Mali, P., Aach, J., Stranges, P.B., Esvelt, K.M., Moosburner, M., Kosuri, S., Yang, L.H., Church, G.M., 2013a. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol.ure Biotechnology 31, 833-+.
    [55]
    Mali, P., Yang, L., Esvelt, K.M., Aach, J., Guell, M., DiCarlo, J.E., Norville, J.E., Church, G.M., 2013b. RNA-guided human genome engineering via Cas9. Science 339, 823-826.
    [56]
    Mao, Z., Bozzella, M., Seluanov, A., Gorbunova, V., 2008. Comparison of nonhomologous end joining and homologous recombination in human cells. DNA Repair (Amst) 7, 1765-1771.
    [57]
    Mashal, R.D., Koontz, J., Sklar, J., 1995. Detection of mutations by cleavage of DNA heteroduplexes with bacteriophage resolvases. Nat. Genet. Genet 9, 177-183.
    [58]
    Nishimasu, H., Shi, X., Ishiguro, S., Gao, L., Hirano, S., Okazaki, S., Noda, T., Abudayyeh, O.O., Gootenberg, J.S., Mori, H., Oura, S., Holmes, B., Tanaka, M., Seki, M., Hirano, H., Aburatani, H., Ishitani, R., Ikawa, M., Yachie, N., Zhang, F., Nureki, O., 2018. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science 361, 1259-1262.
    [59]
    Park, P.J., 2009. ChIP-seq: advantages and challenges of a maturing technology. Nat. Rev. Genet. Rev Genet 10, 669-680.
    [60]
    Qi, L.S., Larson, M.H., Gilbert, L.A., Doudna, J.A., Weissman, J.S., Arkin, A.P., Lim, W.A., 2013. Repurposing CRISPR as an RNA-guided latform for sequence-specific control of gene expression. Cell 152, 1173-1183.
    [61]
    Ran, F.A., Cong, L., Yan, W.X., Scott, D.A., Gootenberg, J.S., Kriz, A.J., Zetsche, B., Shalem, O., Wu, X., Makarova, K.S., Koonin, E.V., Sharp, P.A., Zhang, F., 2015. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186-191.
    [62]
    Ran, F.A., Hsu, P.D., Lin, C.Y., Gootenberg, J.S., Konermann, S., Trevino, A.E., Scott, D.A., Inoue, A., Matoba, S., Zhang, Y., Zhang, F., 2013. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154, 1380-1389.
    [63]
    Rees, H.A., Komor, A.C., Yeh, W.H., Caetano-Lopes, J., Warman, M., Edge, A.S.B., Liu, D.R., 2017. Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery. Nat. Commun. Commun 8.
    [64]
    Rees, H.A., Wilson, C., Doman, J.L., Liu, D.R., 2019. Analysis and minimization of cellular RNA editing by DNA adenine base editors. 5.
    [65]
    Ryan, D.E., Taussig, D., Steinfeld, I., Phadnis, S.M., Lunstad, B.D., Singh, M., Vuong, X., Okochi, K.D., McCaffrey, R., Olesiak, M., Roy, S., Yung, C.W., Curry, B., Sampson, J.R., Bruhn, L., Dellinger, D.J., 2018. Improving CRISPR-Cas specificity with chemical modifications in single-guide RNAs. Nucleic Acids Res. 46, 792-803.
    [66]
    Sander, J.D., Joung, J.K., 2014. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. Biotechnol 32, 347-355.
    [67]
    Schaefer, K.A., Wu, W.H., Colgan, D.F., Tsang, S.H., Bassuk, A.G., Mahajan, V.B., 2017. Unexpected mutations after CRISPR-Cas9 editing in vivo. Nat. Methods 14, 547-548.
    [68]
    Shen, B., Zhang, W.S., Zhang, J., Zhou, J.K., Wang, J.Y., Chen, L., Wang, L., Hodgkins, A., Iyer, V., Huang, X.X., Skarnes, W.C., 2014. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat.ure Methods 11, 399-+.
    [69]
    Slaymaker, I.M., Gao, L., Zetsche, B., Scott, D.A., Yan, W.X., Zhang, F., 2016. Rationally engineered Cas9 nucleases with improved specificity. Science 351, 84-88.
    [70]
    Song, F., Stieger, K., 2017. Optimizing the DNA donor template for homology-directed repair of double-strand breaks. Mol. Ther. Ther Nucleic Acids 7, 53-60.
    [71]
    Sowden, M., Hamm, J.K., Smith, H.C., 1996. Overexpression of APOBEC-1 results in mooring sequence-dependent promiscuous RNA editing. J. Biol. Chem. Biol Chem 271, 3011-3017.
    [72]
    Teytelman, L., Thurtle, D.M., Rine, J., van Oudenaarden, A., 2013. Highly expressed loci are vulnerable to misleading ChIP localization of multiple unrelated proteins. Proc. Natl. Acad. Sci. U. S. A. Natl Acad Sci U S A 110, 18602-18607.
    [73]
    Tsai, S.Q., Nguyen, N.T., Malagon-Lopez, J., Topkar, V.V., Aryee, M.J., Joung, J.K., 2017. CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR-Cas9 nuclease off-targets. Nat. Methods 14, 607-614.
    [74]
    Tsai, S.Q., Zheng, Z., Nguyen, N.T., Liebers, M., Topkar, V.V., Thapar, V., Wyvekens, N., Khayter, C., Iafrate, A.J., Le, L.P., Aryee, M.J., Joung, J.K., 2015. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. Biotechnol 33, 187-197.
    [75]
    Urnov, F.D., Rebar, E.J., Holmes, M.C., Zhang, H.S., Gregory, P.D., 2010. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. Rev Genet 11, 636-646.
    [76]
    Veres, A., Gosis, B.S., Ding, Q., Collins, R., Ragavendran, A., Brand, H., Erdin, S., Cowan, C.A., Talkowski, M.E., Musunuru, K., 2014. Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing. 15, 27-30.
    [77]
    Wang, X., Li, J., Wang, Y., Yang, B., Wei, J., Wu, J., Wang, R., Huang, X., Chen, J., Yang, L., 2018. Efficient base editing in methylated regions with a human APOBEC3A-Cas9 fusion. Nat. Biotechnol. Biotechnol 36, 946-949.
    [78]
    Wienert, B., Wyman, S.K., Richardson, C.D., Yeh, C.D., Akcakaya, P., Porritt, M.J., Morlock, M., Vu, J.T., Kazane, K.R., Watry, H.L., Judge, L.M., Conklin, B.R., Maresca, M., Corn, J.E., 2019. Unbiased detection of CRISPR off-targets in vivo using DISCOVER-Seq. Science 364, 286-289.
    [79]
    Wu, X., Kriz, A.J., Sharp, P.A., 2014a. Target specificity of the CRISPR-Cas9 system. 2, 59-70.
    [80]
    Wu, X., Scott, D.A., Kriz, A.J., Chiu, A.C., Hsu, P.D., Dadon, D.B., Cheng, A.W., Trevino, A.E., Konermann, S., Chen, S., Jaenisch, R., Zhang, F., Sharp, P.A., 2014b. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat. Biotechnol. Biotechnol 32, 670-676.
    [81]
    Xiang, G., Zhang, X., An, C., Cheng, C., Wang, H., 2017. Temperature effect on CRISPR-Cas9 mediated genome editing. J. Genet. Genomics 44, 199-205.
    [82]
    Xu, T., Li, Y., Van Nostrand, J.D., He, Z., Zhou, J., 2014. Cas9-based tools for targeted genome editing and transcriptional control. Appl. Environ. Microbiol. Environ Microbiol 80, 1544-1552.
    [83]
    Yang, B., Li, X., Lei, L., Chen, J., 2017. APOBEC: from mutator to editor. 44, 423-437.
    [84]
    Yang, L., Zhang, X., Wang, L., Yin, S., Zhu, B., Xie, L., Duan, Q., Hu, H., Zheng, R., Wei, Y., Peng, L., Han, H., Zhang, J., Qiu, W., Geng, H., Siwko, S., Zhang, X., Liu, M., Li, D., 2018. Increasing targeting scope of adenosine base editors in mouse and rat embryos through fusion of TadA deaminase with Cas9 variants. 9, 814-819.
    [85]
    Yin, H., Song, C.Q., Suresh, S., Kwan, S.Y., Wu, Q., Walsh, S., Ding, J., Bogorad, R.L., Zhu, L.J., Wolfe, S.A., Koteliansky, V., Xue, W., Langer, R., Anderson, D.G., 2018. Partial DNA-guided Cas9 enables genome editing with reduced off-target activity. Nat. Chem. Biol. Chem Biol 14, 311-316.
    [86]
    Zafra, M.P., Schatoff, E.M., Katti, A., Foronda, M., Breinig, M., Schweitzer, A.Y., Simon, A., Han, T., Goswami, S., Montgomery, E., Thibado, J., Kastenhuber, E.R., Sanchez-Rivera, F.J., Shi, J., Vakoc, C.R., Lowe, S.W., Tschaharganeh, D.F., Dow, L.E., 2018. Optimized base editors enable efficient editing in cells, organoids and mice. Nat. Biotechnol. Biotechnol 36, 888-893.
    [87]
    Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O., Slaymaker, I.M., Makarova, K.S., Essletzbichler, P., Volz, S.E., Joung, J., van der Oost, J., Regev, A., Koonin, E.V., Zhang, F., 2015. Cpf1 is a single RNA-guided endonuclease of a Class 2 CRISPR-as system. Cell 163, 759-771.
    [88]
    Zhou, H., Liu, J., Zhou, C., Gao, N., Rao, Z., Li, H., Hu, X., Li, C., Yao, X., Shen, X., Sun, Y., Wei, Y., Liu, F., Ying, W., Zhang, J., Tang, C., Zhang, X., Xu, H., Shi, L., Cheng, L., Huang, P., Yang, H., 2018. In vivo simultaneous transcriptional activation of multiple genes in the brain using CRISPR-dCas9-activator transgenic mice. Nat. Neurosci. Neurosci 21, 440-446.
    [89]
    Zhou, C.Y., Sun, Y.D., Yan, R., Liu, Y.J., Zuo, E.W., Gu, C., Han, L.X., Wei, Y., Hu, X.D., Zeng, R., Li, Y.X., Zhou, H.B., Guo, F., Yang, H., 2019. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis. Nature 571, 275-278.
    [90]
    Zuo, E., Sun, Y., Wei, W., Yuan, T., Ying, W., Sun, H., Yuan, L., Steinmetz, L.M., Li, Y., Yang, H., 2019. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science 364, 289-292.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (84) PDF downloads (4) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return