5.9
CiteScore
5.9
Impact Factor
Volume 46 Issue 10
Oct.  2019
Turn off MathJax
Article Contents

Histone modifications and their regulatory roles in plant development and environmental memory

doi: 10.1016/j.jgg.2019.09.005
More Information
  • Corresponding author: E-mail address: dhjiang@genetics.ac.cn (Danhua Jiang)
  • Received Date: 2019-08-26
  • Accepted Date: 2019-09-29
  • Rev Recd Date: 2019-09-23
  • Available Online: 2019-11-02
  • Publish Date: 2019-10-20
  • Plants grow in dynamic environments where they receive diverse environmental signals. Swift and precise control of gene expression is essential for plants to align their development and metabolism with fluctuating surroundings. Modifications on histones serve as “histone code” to specify chromatin and gene activities. Different modifications execute distinct functions on the chromatin, promoting either active transcription or gene silencing. Histone writers, erasers, and readers mediate the regulation of histone modifications by catalyzing, removing, and recognizing modifications, respectively. Growing evidence indicates the important function of histone modifications in plant development and environmental responses. Histone modifications also serve as environmental memory for plants to adapt to environmental changes. Here we review recent progress on the regulation of histone modifications in plants, the impact of histone modifications on environment-controlled developmental transitions including germination and flowering, and the role of histone modifications in environmental memory.
  • Equal contribution.
  • loading
  • [1]
    Ahmad, A., Dong, Y., Cao, X., 2011. Characterization of the PRMT gene family in rice reveals conservation of arginine methylation. PLoS One 6, e22664.
    [2]
    Alabert, C., Barth, T.K., Reveron-Gomez, N., Sidoli, S., Schmidt, A., Jensen, O.N., Imhof, A., Groth, A., 2015. Two distinct modes for propagation of histone PTMs across the cell cycle. Genes Dev. 29, 585-590.
    [3]
    Barski, A., Cuddapah, S., Cui, K., Roh, T.Y., Schones, D.E., Wang, Z., Wei, G., Chepelev, I., Zhao, K., 2007. High-resolution profiling of histone methylations in the human genome. Cell 129, 823-837.
    [4]
    Bedford, M.T., Clarke, S.G., 2009. Protein arginine methylation in mammals: who, what, and why. Mol. Cell 33, 1-13.
    [5]
    Bernatavichute, Y.V., Zhang, X., Cokus, S., Pellegrini, M., Jacobsen, S.E., 2008. Genome-wide association of histone H3 lysine nine methylation with CHG DNA methylation in Arabidopsis thaliana. PLoS One 3, e3156.
    [6]
    Bernstein, B.E., Mikkelsen, T.S., Xie, X., Kamal, M., Huebert, D.J., Cuff, J., Fry, B., Meissner, A., Wernig, M., Plath, K., Jaenisch, R., Wagschal, A., Feil, R., Schreiber, S.L., Lander, E.S., 2006. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315-326.
    [7]
    Berr, A., McCallum, E.J., Menard, R., Meyer, D., Fuchs, J., Dong, A., Shen, W.H., 2010. Arabidopsis SET DOMAIN GROUP2 is required for H3K4 trimethylation and is crucial for both sporophyte and gametophyte development. Plant Cell 22, 3232-3248.
    [8]
    Berr, A., Shafiq, S., Pinon, V., Dong, A., Shen, W.H., 2015. The trxG family histone methyltransferase SET DOMAIN GROUP 26 promotes flowering via a distinctive genetic pathway. Plant J. 81, 316-328.
    [9]
    Bouyer, D., Roudier, F., Heese, M., Andersen, E.D., Gey, D., Nowack, M.K., Goodrich, J., Renou, J.P., Grini, P.E., Colot, V., Schnittger, A., 2011. Polycomb repressive complex 2 controls the embryo-to-seedling phase transition. PLoS Genet. 7, e1002014.
    [10]
    Bratzel, F., Lopez-Torrejon, G., Koch, M., Del Pozo, J.C., Calonje, M., 2010. Keeping cell identity in Arabidopsis requires PRC1 RING-finger homologs that catalyze H2A monoubiquitination. Curr. Biol. 20, 1853-1859.
    [11]
    Bu, Z., Yu, Y., Li, Z., Liu, Y., Jiang, W., Huang, Y., Dong, A.W., 2014. Regulation of Arabidopsis flowering by the histone mark readers MRG1/2 via interaction with CONSTANS to modulate FT expression. PLoS Genet. 10, e1004617.
    [12]
    Buenrostro, J.D., Giresi, P.G., Zaba, L.C., Chang, H.Y., Greenleaf, W.J., 2013. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213-1218.
    [13]
    Calonje, M., Sanchez, R., Chen, L., Sung, Z.R., 2008. EMBRYONIC FLOWER1 participates in polycomb group-mediated AG gene silencing in Arabidopsis. Plant Cell 20, 277-291.
    [14]
    Cao, Y., Dai, Y., Cui, S., Ma, L., 2008. Histone H2B monoubiquitination in the chromatin of FLOWERING LOCUS C regulates flowering time in Arabidopsis. Plant Cell 20, 2586-2602.
    [15]
    Chang, B., Chen, Y., Zhao, Y., Bruick, R.K., 2007. JMJD6 is a histone arginine demethylase. Science 318, 444-447.
    [16]
    Charng, Y.Y., Liu, H.C., Liu, N.Y., Hsu, F.C., Ko, S.S., 2006. Arabidopsis Hsa32, a novel heat shock protein, is essential for acquired thermotolerance during long recovery after acclimation. Plant Physiol. 140, 1297-1305.
    [17]
    Chen, L.Q., Luo, J.H., Cui, Z.H., Xue, M., Wang, L., Zhang, X.Y., Pawlowski, W.P., He, Y., 2017. ATX3, ATX4, and ATX5 encode putative H3K4 methyltransferases and are critical for plant development. Plant Physiol. 174, 1795-1806.
    [18]
    Cho, J.N., Ryu, J.Y., Jeong, Y.M., Park, J., Song, J.J., Amasino, R.M., Noh, B., Noh, Y.S., 2012. Control of seed germination by light-induced histone arginine demethylation activity. Dev. Cell 22, 736-748.
    [19]
    Choi, K., Kim, J., Hwang, H.J., Kim, S., Park, C., Kim, S.Y., Lee, I., 2011. The FRIGIDA complex activates transcription of FLC, a strong flowering repressor in Arabidopsis, by recruiting chromatin modification factors. Plant Cell 23, 289-303.
    [20]
    Choi, S.C., Lee, S., Kim, S.R., Lee, Y.S., Liu, C., Cao, X., An, G., 2014. Trithorax group protein Oryza sativa Trithorax1 controls flowering time in rice via interaction with early heading date3. Plant Physiol. 164, 1326-1337.
    [21]
    Colville, A., Alhattab, R., Hu, M., Labbe, H., Xing, T., Miki, B., 2011. Role of HD2 genes in seed germination and early seedling growth in Arabidopsis. Plant Cell Rep. 30, 1969-1979.
    [22]
    Conrath, U., Beckers, G.J., Langenbach, C.J., Jaskiewicz, M.R., 2015. Priming for enhanced defense. Annu. Rev. Phytopathol. 53, 97-119.
    [23]
    Crevillen, P., Yang, H., Cui, X., Greeff, C., Trick, M., Qiu, Q., Cao, X., Dean, C., 2014. Epigenetic reprogramming that prevents transgenerational inheritance of the vernalized state. Nature 515, 587-590.
    [24]
    Crisp, P.A., Ganguly, D., Eichten, S.R., Borevitz, J.O., Pogson, B.J., 2016. Reconsidering plant memory: intersections between stress recovery, RNA turnover, and epigenetics. Science Adv. 2, e1501340.
    [25]
    Cui, X., Lu, F., Qiu, Q., Zhou, B., Gu, L., Zhang, S., Kang, Y., Cui, X., Ma, X., Yao, Q., Ma, J., Zhang, X., Cao, X., 2016. REF6 recognizes a specific DNA sequence to demethylate H3K27me3 and regulate organ boundary formation in Arabidopsis. Nat. Genet. 48, 694-699.
    [26]
    De Lucia, F., Crevillen, P., Jones, A.M., Greb, T., Dean, C., 2008. A PHD-polycomb repressive complex 2 triggers the epigenetic silencing of FLC during vernalization. Proc. Natl. Acad. Sci. U.S.A. 105, 16831-16836.
    [27]
    Deal, R.B., Henikoff, S., 2011. The INTACT method for cell type-specific gene expression and chromatin profiling in Arabidopsis thaliana. Nat. Protoc. 6, 56-68.
    [28]
    Deng, W., Buzas, D.M., Ying, H., Robertson, M., Taylor, J., Peacock, W.J., Dennis, E.S., Helliwell, C., 2013. Arabidopsis Polycomb Repressive Complex 2 binding sites contain putative GAGA factor binding motifs within coding regions of genes. BMC Genomics. 14, 593.
    [29]
    Derkacheva, M., Steinbach, Y., Wildhaber, T., Mozgova, I., Mahrez, W., Nanni, P., Bischof, S., Gruissem, W., Hennig, L., 2013. Arabidopsis MSI1 connects LHP1 to PRC2 complexes. EMBO J. 32, 2073-2085.
    [30]
    Ding, Y., Fromm, M., Avramova, Z., 2012. Multiple exposures to drought ‘train’ transcriptional responses in Arabidopsis. Nat. Commun. 3, 740.
    [31]
    Duan, C.G., Zhu, J.K., Cao, X., 2018. Retrospective and perspective of plant epigenetics in China. J. Genet. Genomics 45, 621-638.
    [32]
    Ebbs, M.L., Bartee, L., Bender, J., 2005. H3 lysine 9 methylation is maintained on a transcribed inverted repeat by combined action of SUVH6 and SUVH4 methyltransferases. Mol. Cell. Biol. 25, 10507-10515.
    [33]
    Feng, X.J., Li, J.R., Qi, S.L., Lin, Q.F., Jin, J.B., Hua, X.J., 2016. Light affects salt stress-induced transcriptional memory of P5CS1 in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 113, E8335-E8343.
    [34]
    Fu, Z.Q., Dong, X., 2013. Systemic acquired resistance: turning local infection into global defense. Annu. Rev. Plant Biol. 64, 839-863.
    [35]
    Gazzarrini, S., Tsai, A.Y., 2015. Hormone cross-talk during seed germination. Essays Biochem. 58, 151-164.
    [36]
    Gu, X., Jiang, D., Wang, Y., Bachmair, A., He, Y., 2009. Repression of the floral transition via histone H2B monoubiquitination. Plant J. 57, 522-533.
    [37]
    Gu, D., Chen, C.Y., Zhao, M., Zhao, L., Duan, X., Duan, J., Wu, K., Liu, X., 2017. Identification of HDA15-PIF1 as a key repression module directing the transcriptional network of seed germination in the dark. Nucleic Acids Res. 45, 7137-7150.
    [38]
    Guo, L., Yu, Y., Law, J.A., Zhang, X., 2010. SET DOMAIN GROUP2 is the major histone H3 lysine 4 trimethyltransferase in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 107, 18557-18562.
    [39]
    Hayashi, K., Hasegawa, J., Matsunaga, S., 2013. The boundary of the meristematic and elongation zones in roots: endoreduplication precedes rapid cell expansion. Sci. Rep. 3, 2723.
    [40]
    He, Y., 2012. Chromatin regulation of flowering. Trends Plant Sci. 17, 556-562.
    [41]
    Hecker, A., Brand, L.H., Peter, S., Simoncello, N., Kilian, J., Harter, K., Gaudin, V., Wanke, D., 2015. The Arabidopsis GAGA-binding factor BASIC PENTACYSTEINE6 recruits the POLYCOMB-REPRESSIVE COMPLEX1 component LIKE HETEROCHROMATIN PROTEIN1 to GAGA DNA motifs. Plant Physiol. 168, 1013-1024.
    [42]
    Heo, J.B., Sung, S., 2011. Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 331, 76-79.
    [43]
    Hilker, M., Schwachtje, J., Baier, M., Balazadeh, S., Baurle, I., Geiselhardt, S., Hincha, D.K., Kunze, R., Mueller-Roeber, B., Rillig, M.C., Rolff, J., Romeis, T., Schmulling, T., Steppuhn, A., van Dongen, J., Whitcomb, S.J., Wurst, S., Zuther, E., Kopka, J., 2016. Priming and memory of stress responses in organisms lacking a nervous system. Biol. Rev. Camb. Philos. Soc. 91, 1118-1133.
    [44]
    Hsu, P.L., Li, H., Lau, H.T., Leonen, C., Dhall, A., Ong, S.E., Chatterjee, C., Zheng, N., 2018. Crystal structure of the COMPASS H3K4 methyltransferase catalytic module. Cell 174, 1106-1116. e1109.
    [45]
    Hwang, B., Lee, J.H., Bang, D., 2018. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp. Mol. Med. 50, 96.
    [46]
    Jackson, J.P., Lindroth, A.M., Cao, X., Jacobsen, S.E., 2002. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416, 556-560.
    [47]
    Jacob, Y., Feng, S., LeBlanc, C.A., Bernatavichute, Y.V., Stroud, H., Cokus, S., Johnson, L.M., Pellegrini, M., Jacobsen, S.E., Michaels, S.D., 2009. ATXR5 and ATXR6 are H3K27 monomethyltransferases required for chromatin structure and gene silencing. Nat. Struct. Mol. Biol. 16, 763-768.
    [48]
    Jaskiewicz, M., Conrath, U., Peterhansel, C., 2011. Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response. EMBO Rep. 12, 50-55.
    [49]
    Jenuwein, T., Allis, C.D., 2001. Translating the histone code. Science 293, 1074-1080.
    [50]
    Jeong, J.H., Song, H.R., Ko, J.H., Jeong, Y.M., Kwon, Y.E., Seol, J.H., Amasino, R.M., Noh, B., Noh, Y.S., 2009. Repression of FLOWERING LOCUS T chromatin by functionally redundant histone H3 lysine 4 demethylases in Arabidopsis. PLoS One 4, e8033.
    [51]
    Jiang, D., Berger, F., 2017. DNA replication-coupled histone modification maintains Polycomb gene silencing in plants. Science 357, 1146-1149.
    [52]
    Jiang, D., Yang, W., He, Y., Amasino, R.M., 2007. Arabidopsis relatives of the human lysine-specific Demethylase1 repress the expression of FWA and FLOWERING LOCUS C and thus promote the floral transition. Plant Cell 19, 2975-2987.
    [53]
    Jiang, D., Wang, Y., Wang, Y., He, Y., 2008. Repression of FLOWERING LOCUS C and FLOWERING LOCUS T by the Arabidopsis Polycomb repressive complex 2 components. PLoS One 3, e3404.
    [54]
    Jiang, D., Gu, X., He, Y., 2009. Establishment of the winter-annual growth habit via FRIGIDA-mediated histone methylation at FLOWERING LOCUS C in Arabidopsis. Plant Cell 21, 1733-1746.
    [55]
    Jiang, D., Kong, N.C., Gu, X., Li, Z., He, Y., 2011. Arabidopsis COMPASS-like complexes mediate histone H3 lysine-4 trimethylation to control floral transition and plant development. PLoS Genet. 7, e1001330.
    [56]
    Jiang, P., Wang, S., Jiang, H., Cheng, B., Wu, K., Ding, Y., 2018a. The COMPASS-like complex promotes flowering and panicle branching in rice. Plant Physiol. 176, 2761-2771.
    [57]
    Jiang, P., Wang, S., Zheng, H., Li, H., Zhang, F., Su, Y., Xu, Z., Lin, H., Qian, Q., Ding, Y., 2018b. SIP1 participates in regulation of flowering time in rice by recruiting OsTrx1 to Ehd1. New Phytol. 219, 422-435.
    [58]
    Kim, D.H., Sung, S., 2017. Vernalization-triggered intragenic chromatin loop formation by long noncoding RNAs. Dev. Cell 40, 302-312 e304.
    [59]
    Kim, J.M., Sasaki, T., Ueda, M., Sako, K., Seki, M., 2015. Chromatin changes in response to drought, salinity, heat, and cold stresses in plants. Front. Plant Sci. 6, 114.
    [60]
    Kwon, C.S., Lee, D., Choi, G., Chung, W.I., 2009. Histone occupancy-dependent and -independent removal of H3K27 trimethylation at cold-responsive genes in Arabidopsis. Plant J. 60, 112-121.
    [61]
    Lamke, J., Baurle, I., 2017. Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biol. 18, 124.
    [62]
    Lamke, J., Brzezinka, K., Altmann, S., Baurle, I., 2016. A hit-and-run heat shock factor governs sustained histone methylation and transcriptional stress memory. EMBO J. 35, 162-175.
    [63]
    Lee, N., Kang, H., Lee, D., Choi, G., 2014. A histone methyltransferase inhibits seed germination by increasing PIF1 mRNA expression in imbibed seeds. Plant J. 78, 282-293.
    [64]
    Li, X., Wang, X., He, K., Ma, Y., Su, N., He, H., Stolc, V., Tongprasit, W., Jin, W., Jiang, J., Terzaghi, W., Li, S., Deng, X.W., 2008. High-resolution mapping of epigenetic modifications of the rice genome uncovers interplay between DNA methylation, histone methylation, and gene expression. Plant Cell 20, 259-276.
    [65]
    Li, C., Gu, L., Gao, L., Chen, C., Wei, C.Q., Qiu, Q., Chien, C.W., Wang, S., Jiang, L., Ai, L.F., Chen, C.Y., Yang, S., Nguyen, V., Qi, Y., Snyder, M.P., Burlingame, A.L., Kohalmi, S.E., Huang, S., Cao, X., Wu, K., Chen, X., Cui, Y., 2016a. Concerted genomic targeting of H3K27 demethylase REF6 and chromatin-remodeling ATPase BRM in Arabidopsis. Nat. Genet. 48, 687-693.
    [66]
    Li, Z., Jiang, D., Fu, X., Luo, X., Liu, R., He, Y., 2016b. Coupling of histone methylation and RNA processing by the nuclear mRNA cap-binding complex. Native Plants 2, 16015.
    [67]
    Li, S., Ali, S., Duan, X., Liu, S., Du, J., Liu, C., Dai, H., Zhou, M., Zhou, L., Yang, L., Chu, P., Li, L., Bhatia, R., Schones, D.E., Wu, X., Xu, H., Hua, Y., Guo, Z., Yang, Y., Zheng, L., Shen, B., 2018a. JMJD1B demethylates H4R3me2s and H3K9me2 to facilitate gene expression for development of hematopoietic stem and progenitor cells. Cell Rep. 23, 389-403.
    [68]
    Li, Z., Fu, X., Wang, Y., Liu, R., He, Y., 2018b. Polycomb-mediated gene silencing by the BAH-EMF1 complex in plants. Nat. Genet. 50, 1254-1261.
    [69]
    Li, Z., Jiang, D., He, Y., 2018c. FRIGIDA establishes a local chromosomal environment for FLOWERING LOCUS C mRNA production. Native Plants 4, 836-846.
    [70]
    Liu, Y., Koornneef, M., Soppe, W.J., 2007. The absence of histone H2B monoubiquitination in the Arabidopsis hub1 (rdo4) mutant reveals a role for chromatin remodeling in seed dormancy. Plant Cell 19, 433-444.
    [71]
    Liu, C., Lu, F., Cui, X., Cao, X., 2010. Histone methylation in higher plants. Annu. Rev. Plant Biol. 61, 395-420.
    [72]
    Liu, Y., Geyer, R., van Zanten, M., Carles, A., Li, Y., Horold, A., van Nocker, S., Soppe, W.J., 2011. Identification of the Arabidopsis REDUCED DORMANCY 2 gene uncovers a role for the polymerase associated factor 1 complex in seed dormancy. PLoS One 6, e22241.
    [73]
    Liu, H.C., Lamke, J., Lin, S.Y., Hung, M.J., Liu, K.M., Charng, Y.Y., Baurle, I., 2018a. Distinct heat shock factors and chromatin modifications mediate the organ-autonomous transcriptional memory of heat stress. Plant J. 95, 401-413.
    [74]
    Liu, X., Yang, Y., Hu, Y., Zhou, L., Li, Y., Hou, X., 2018b. Temporal-specific interaction of NF-YC and CURLY LEAF during the floral transition regulates flowering. Plant Physiol. 177, 105-114.
    [75]
    Liu, B., Liu, Y., Wang, B., Luo, Q., Shi, J., Gan, J., Shen, W.H., Yu, Y., Dong, A., 2019. The transcription factor OsSUF4 interacts with SDG725 in promoting H3K36me3 establishment. Nat. Commun. 10, 2999.
    [76]
    Lu, F., Cui, X., Zhang, S., Liu, C., Cao, X., 2010. JMJ14 is an H3K4 demethylase regulating flowering time in Arabidopsis. Cell Res. 20, 387-390.
    [77]
    Lu, F., Cui, X., Zhang, S., Jenuwein, T., Cao, X., 2011. Arabidopsis REF6 is a histone H3 lysine 27 demethylase. Nat. Genet. 43, 715-719.
    [78]
    Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F., Richmond, T.J., 1997. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251-260.
    [79]
    Marmorstein, R., Zhou, M.M., 2014. Writers and readers of histone acetylation: structure, mechanism, and inhibition. Cold Spring Harbor Persp. Biol. 6, a018762.
    [80]
    Molitor, A.M., Bu, Z., Yu, Y., Shen, W.H., 2014. Arabidopsis AL PHD-PRC1 complexes promote seed germination through H3K4me3-to-H3K27me3 chromatin state switch in repression of seed developmental genes. PLoS Genet. 10, e1004091.
    [81]
    Mozgova, I., Hennig, L., 2015. The polycomb group protein regulatory network. Annu. Rev. Plant Biol. 66, 269-296.
    [82]
    Mylne, J.S., Barrett, L., Tessadori, F., Mesnage, S., Johnson, L., Bernatavichute, Y.V., Jacobsen, S.E., Fransz, P., Dean, C., 2006. LHP1, the Arabidopsis homologue of HETEROCHROMATIN PROTEIN1, is required for epigenetic silencing of FLC. Proc. Natl. Acad. Sci. U.S.A. 103, 5012-5017.
    [83]
    Ning, Y.Q., Ma, Z.Y., Huang, H.W., Mo, H., Zhao, T.T., Li, L., Cai, T., Chen, S., Ma, L., He, X.J., 2015. Two novel NAC transcription factors regulate gene expression and flowering time by associating with the histone demethylase JMJ14. Nucleic Acids Res. 43, 1469-1484.
    [84]
    Osterlund, M.T., Hardtke, C.S., Wei, N., Deng, X.W., 2000. Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405, 462-466.
    [85]
    Qiu, Q., Mei, H., Deng, X., He, K., Wu, B., Yao, Q., Zhang, J., Lu, F., Ma, J., Cao, X., 2019. DNA methylation repels targeting of Arabidopsis REF6. Nat. Commun. 10, 2063.
    [86]
    Qu, Q., Takahashi, Y.H., Yang, Y., Hu, H., Zhang, Y., Brunzelle, J.S., Couture, J.F., Shilatifard, A., Skiniotis, G., 2018. Structure and conformational dynamics of a COMPASS histone H3K4 methyltransferase complex. Cell 174, 1117-1126. e1112.
    [87]
    Questa, J.I., Song, J., Geraldo, N., An, H., Dean, C., 2016. Arabidopsis transcriptional repressor VAL1 triggers Polycomb silencing at FLC during vernalization. Science 353, 485-488.
    [88]
    Ramirez-Prado, J.S., Piquerez, S.J.M., Bendahmane, A., Hirt, H., Raynaud, C., Benhamed, M., 2018. Modify the histone to win the battle: chromatin dynamics in plant-pathogen interactions. Front. Plant Sci. 9, 355.
    [89]
    Reddy, G.V., Heisler, M.G., Ehrhardt, D.W., Meyerowitz, E.M., 2004. Real-time lineage analysis reveals oriented cell divisions associated with morphogenesis at the shoot apex of Arabidopsis thaliana. Development 131, 4225-4237.
    [90]
    Reinberg, D., Vales, L.D., 2018. Chromatin domains rich in inheritance. Science 361, 33-34.
    [91]
    Roudier, F., Ahmed, I., Berard, C., Sarazin, A., Mary-Huard, T., Cortijo, S., Bouyer, D., Caillieux, E., Duvernois-Berthet, E., Al-Shikhley, L., Giraut, L., Despres, B., Drevensek, S., Barneche, F., Derozier, S., Brunaud, V., Aubourg, S., Schnittger, A., Bowler, C., Martin-Magniette, M.L., Robin, S., Caboche, M., Colot, V., 2011. Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. EMBO J. 30, 1928-1938.
    [92]
    Sani, E., Herzyk, P., Perrella, G., Colot, V., Amtmann, A., 2013. Hyperosmotic priming of Arabidopsis seedlings establishes a long-term somatic memory accompanied by specific changes of the epigenome. Genome Biol. 14, R59.
    [93]
    Schmitz, R.J., Tamada, Y., Doyle, M.R., Zhang, X., Amasino, R.M., 2009. Histone H2B deubiquitination is required for transcriptional activation of FLOWERING LOCUS C and for proper control of flowering in Arabidopsis. Plant Physiol. 149, 1196-1204.
    [94]
    Shahbazian, M.D., Grunstein, M., 2007. Functions of site-specific histone acetylation and deacetylation. Annu. Rev. Biochem. 76, 75-100.
    [95]
    Shi, H., Zhong, S., Mo, X., Liu, N., Nezames, C.D., Deng, X.W., 2013. HFR1 sequesters PIF1 to govern the transcriptional network underlying light-initiated seed germination in Arabidopsis. Plant Cell 25, 3770-3784.
    [96]
    Simon, J.A., Kingston, R.E., 2013. Occupying chromatin: polycomb mechanisms for getting to genomic targets, stopping transcriptional traffic, and staying put. Mol. Cell 49, 808-824.
    [97]
    Singh, P., Yekondi, S., Chen, P.W., Tsai, C.H., Yu, C.W., Wu, K., Zimmerli, L., 2014. Environmental history modulates Arabidopsis pattern-triggered immunity in a HISTONE ACETYLTRANSFERASE1-dependent manner. Plant Cell 26, 2676-2688.
    [98]
    Skene, P.J., Henikoff, S., 2017. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. eLife 6, e21856
    [99]
    Sridhar, V.V., Kapoor, A., Zhang, K., Zhu, J., Zhou, T., Hasegawa, P.M., Bressan, R.A., Zhu, J.K., 2007. Control of DNA methylation and heterochromatic silencing by histone H2B deubiquitination. Nature 447, 735-738.
    [100]
    Su, Y., Wang, S., Zhang, F., Zheng, H., Liu, Y., Huang, T., Ding, Y., 2017. Phosphorylation of histone H2A at serine 95: a plant-specific mark involved in flowering time regulation and H2A.Z deposition. Plant Cell 29, 2197-2213.
    [101]
    Sung, S., He, Y., Eshoo, T.W., Tamada, Y., Johnson, L., Nakahigashi, K., Goto, K., Jacobsen, S.E., Amasino, R.M., 2006. Epigenetic maintenance of the vernalized state in Arabidopsis thaliana requires LIKE HETEROCHROMATIN PROTEIN 1. Nat. Genet. 38, 706-710.
    [102]
    Swiezewski, S., Liu, F., Magusin, A., Dean, C., 2009. Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target. Nature 462, 799-802.
    [103]
    Szabados, L., Savoure, A., 2010. Proline: a multifunctional amino acid. Trends Plant Sci. 15, 89-97.
    [104]
    Tamada, Y., Yun, J.Y., Woo, S.C., Amasino, R.M., 2009. ARABIDOPSIS TRITHORAX-RELATED7 is required for methylation of lysine 4 of histone H3 and for transcriptional activation of FLOWERING LOCUS C. Plant Cell 21, 3257-3269.
    [105]
    Tanaka, M., Kikuchi, A., Kamada, H., 2008. The Arabidopsis histone deacetylases HDA6 and HDA19 contribute to the repression of embryonic properties after germination. Plant Physiol. 146, 149-161.
    [106]
    Tao, Z., Shen, L., Gu, X., Wang, Y., Yu, H., He, Y., 2017. Embryonic epigenetic reprogramming by a pioneer transcription factor in plants. Nature 551, 124-128.
    [107]
    Tao, Z., Hu, H., Luo, X., Jia, B., Du, J., He, Y., 2019. Embryonic resetting of the parental vernalized state by two B3 domain transcription factors in Arabidopsis. Native Plants 5, 424-435.
    [108]
    Tian, Y., Zheng, H., Zhang, F., Wang, S., Ji, X., Xu, C., He, Y., Ding, Y., 2019. PRC2 recruitment and H3K27me3 deposition at FLC require FCA binding of COOLAIR. Science Adv. 5. eaau7246.
    [109]
    Turck, F., Roudier, F., Farrona, S., Martin-Magniette, M.L., Guillaume, E., Buisine, N., Gagnot, S., Martienssen, R.A., Coupland, G., Colot, V., 2007. Arabidopsis TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3 lysine 27. PLoS Genet. 3, e86.
    [110]
    van Zanten, M., Zoll, C., Wang, Z., Philipp, C., Carles, A., Li, Y., Kornet, N.G., Liu, Y., Soppe, W.J., 2014. HISTONE DEACETYLASE 9 represses seedling traits in Arabidopsis thaliana dry seeds. Plant J. 80, 475-488.
    [111]
    Wang, L., Brown, J.L., Cao, R., Zhang, Y., Kassis, J.A., Jones, R.S., 2004. Hierarchical recruitment of polycomb group silencing complexes. Mol. Cell 14, 637-646.
    [112]
    Wang, Z., Cao, H., Sun, Y., Li, X., Chen, F., Carles, A., Li, Y., Ding, M., Zhang, C., Deng, X., Soppe, W.J., Liu, Y.X., 2013. Arabidopsis paired amphipathic helix proteins SNL1 and SNL2 redundantly regulate primary seed dormancy via abscisic acid-ethylene antagonism mediated by histone deacetylation. Plant Cell 25, 149-166.
    [113]
    Wang, Y., Gu, X., Yuan, W., Schmitz, R.J., He, Y., 2014. Photoperiodic control of the floral transition through a distinct polycomb repressive complex. Dev. Cell 28, 727-736.
    [114]
    Wang, Z., Chen, F., Li, X., Cao, H., Ding, M., Zhang, C., Zuo, J., Xu, C., Xu, J., Deng, X., Xiang, Y., Soppe, W.J., Liu, Y., 2016. Arabidopsis seed germination speed is controlled by SNL histone deacetylase-binding factor-mediated regulation of AUX1. Nat. Commun. 7, 13412.
    [115]
    Wood, C.C., Robertson, M., Tanner, G., Peacock, W.J., Dennis, E.S., Helliwell, C.A., 2006. The Arabidopsis thaliana vernalization response requires a polycomb-like protein complex that also includes VERNALIZATION INSENSITIVE 3. Proc. Natl. Acad. Sci. U.S.A. 103, 14631-14636.
    [116]
    Xiao, J., Jin, R., Yu, X., Shen, M., Wagner, J.D., Pai, A., Song, C., Zhuang, M., Klasfeld, S., He, C., Santos, A.M., Helliwell, C., Pruneda-Paz, J.L., Kay, S.A., Lin, X., Cui, S., Garcia, M.F., Clarenz, O., Goodrich, J., Zhang, X., Austin, R.S., Bonasio, R., Wagner, D., 2017. Cis and trans determinants of epigenetic silencing by Polycomb repressive complex 2 in Arabidopsis. Nat. Genet. 49, 1546-1552.
    [117]
    Xu, L., Shen, W.H., 2008. Polycomb silencing of KNOX genes confines shoot stem cell niches in Arabidopsis. Curr. Biol. 18, 1966-1971.
    [118]
    Xu, L., Zhao, Z., Dong, A., Soubigou-Taconnat, L., Renou, J.P., Steinmetz, A., Shen, W.H., 2008. Di- and tri- but not monomethylation on histone H3 lysine 36 marks active transcription of genes involved in flowering time regulation and other processes in Arabidopsis thaliana. Mol. Cell. Biol. 28, 1348-1360.
    [119]
    Xu, L., Menard, R., Berr, A., Fuchs, J., Cognat, V., Meyer, D., Shen, W.H., 2009. The E2 ubiquitin-conjugating enzymes, AtUBC1 and AtUBC2, play redundant roles and are involved in activation of FLC expression and repression of flowering in Arabidopsis thaliana. Plant J. 57, 279-288.
    [120]
    Xu, Y., Gan, E.S., Zhou, J., Wee, W.Y., Zhang, X., Ito, T., 2014. Arabidopsis MRG domain proteins bridge two histone modifications to elevate expression of flowering genes. Nucleic Acids Res. 42, 10960-10974.
    [121]
    Xu, F., Kuo, T., Rosli, Y., Liu, M.S., Wu, L., Chen, L.O., Fletcher, J.C., Sung, Z.R., Pu, L., 2018. Trithorax group proteins act together with a polycomb group protein to maintain chromatin integrity for epigenetic silencing during seed germination in Arabidopsis. Mol. Plant 11, 659-677.
    [122]
    Xue, H., Yao, T., Cao, M., Zhu, G., Li, Y., Yuan, G., Chen, Y., Lei, M., Huang, J., 2019. Structural basis of nucleosome recognition and modification by MLL methyltransferases. Nature 573, 445-449.
    [123]
    Yan, W., Chen, D., Smaczniak, C., Engelhorn, J., Liu, H., Yang, W., Graf, A., Carles, C.C., Zhou, D.X., Kaufmann, K., 2018. Dynamic and spatial restriction of Polycomb activity by plant histone demethylases. Native Plants 4, 681-689.
    [124]
    Yang, W., Jiang, D., Jiang, J., He, Y., 2010. A plant-specific histone H3 lysine 4 demethylase represses the floral transition in Arabidopsis. Plant J. 62, 663-673.
    [125]
    Yang, H., Howard, M., Dean, C., 2014. Antagonistic roles for H3K36me3 and H3K27me3 in the cold-induced epigenetic switch at Arabidopsis FLC. Curr. Biol. 24, 1793-1797.
    [126]
    Yang, H., Berry, S., Olsson, T.S.G., Hartley, M., Howard, M., Dean, C., 2017. Distinct phases of Polycomb silencing to hold epigenetic memory of cold in Arabidopsis. Science 357, 1142-1145.
    [127]
    Yang, Z., Qian, S., Scheid, R.N., Lu, L., Chen, X., Liu, R., Du, X., Lv, X., Boersma, M.D., Scalf, M., Smith, L.M., Denu, J.M., Du, J., Zhong, X., 2018. EBS is a bivalent histone reader that regulates floral phase transition in Arabidopsis. Nat. Genet. 50, 1247-1253.
    [128]
    Yuan, W., Luo, X., Li, Z., Yang, W., Wang, Y., Liu, R., Du, J., He, Y., 2016. A cis cold memory element and a trans epigenome reader mediate Polycomb silencing of FLC by vernalization in Arabidopsis. Nat. Genet. 48, 1527-1534.
    [129]
    Zhang, X., Clarenz, O., Cokus, S., Bernatavichute, Y.V., Pellegrini, M., Goodrich, J., Jacobsen, S.E., 2007a. Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biol. 5, e129.
    [130]
    Zhang, X., Germann, S., Blus, B.J., Khorasanizadeh, S., Gaudin, V., Jacobsen, S.E., 2007b. The Arabidopsis LHP1 protein colocalizes with histone H3 Lys27 trimethylation. Nat. Struct. Mol. Biol. 14, 869-871.
    [131]
    Zhang, K., Sridhar, V.V., Zhu, J., Kapoor, A., Zhu, J.K., 2007c. Distinctive core histone post-translational modification patterns in Arabidopsis thaliana. PLoS One 2, e1210.
    [132]
    Zhang, X., Bernatavichute, Y.V., Cokus, S., Pellegrini, M., Jacobsen, S.E., 2009. Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana. Genome Biol. 10, R62.
    [133]
    Zhang, S., Zhou, B., Kang, Y., Cui, X., Liu, A., Deleris, A., Greenberg, M.V., Cui, X., Qiu, Q., Lu, F., Wohlschlegel, J.A., Jacobsen, S.E., Cao, X., 2015. C-terminal domains of a histone demethylase interact with a pair of transcription factors and mediate specific chromatin association. Cell Dis. 1, 15003
    [134]
    Zhang, C., Du, X., Tang, K., Yang, Z., Pan, L., Zhu, P., Luo, J., Jiang, Y., Zhang, H., Wan, H., Wang, X., Wu, F., Tao, W.A., He, X.J., Zhang, H., Bressan, R.A., Du, J., Zhu, J.K., 2018. Arabidopsis AGDP1 links H3K9me2 to DNA methylation in heterochromatin. Nat. Commun. 9, 4547.
    [135]
    Zhao, M., Yang, S., Liu, X., Wu, K., 2015. Arabidopsis histone demethylases LDL1 and LDL2 control primary seed dormancy by regulating DELAY OF GERMINATION 1 and ABA signaling-related genes. Front. Plant Sci. 6, 159.
    [136]
    Zhao, S., Cheng, L., Gao, Y., Zhang, B., Zheng, X., Wang, L., Li, P., Sun, Q., Li, H., 2019. Plant HP1 protein ADCP1 links multivalent H3K9 methylation readout to heterochromatin formation. Cell Res. 29, 54-66.
    [137]
    Zheng, J., Chen, F., Wang, Z., Cao, H., Li, X., Deng, X., Soppe, W.J., Li, Y., Liu, Y., 2012. A novel role for histone methyltransferase KYP/SUVH4 in the control of Arabidopsis primary seed dormancy. New Phytol. 193, 605-616.
    [138]
    Zheng, S., Hu, H., Ren, H., Yang, Z., Qiu, Q., Qi, W., Liu, X., Chen, X., Cui, X., Li, S., Zhou, B., Sun, D., Cao, X., Du J., 2019. The Arabidopsis H3K27me3 demethylase JUMONJI 13 is a temperature and photoperiod dependent flowering repressor. Nat. Commun. 10, 1303.
    [139]
    Zhou, Y., Wang, Y., Krause, K., Yang, T., Dongus, J.A., Zhang, Y., Turck, F., 2018. Telobox motifs recruit CLF/SWN-PRC2 for H3K27me3 deposition via TRB factors in Arabidopsis. Nat. Genet. 50, 638-644.
    [140]
    Zhu, L., Bu, Q., Xu, X., Paik, I., Huang, X., Hoecker, U., Deng, X.W., Huq, E., 2015. CUL4 forms an E3 ligase with COP1 and SPA to promote light-induced degradation of PIF1. Nat. Commun. 6, 7245.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (166) PDF downloads (14) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return