[1] |
Broadhurst, D., Goodacre, R., Reinke, S.N., Kuligowski, J., Wilson, I.D., Lewis, M.R., Dunn, W.B., 2018. Guidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studies. Metabolomics 14, 72.
|
[2] |
Chen, C., Grennan, K., Badner, J., Zhang, D., Gershon, E., Jin, L., Liu, C., 2011. Removing batch effects in analysis of expression microarray data: an evaluation of six batch adjustment methods. Plos One 6, e17238.
|
[3] |
Fawcett, T., 2006. An introduction to ROC analysis. Pattern Recognition Letters 27, 861-874.
|
[4] |
Ferreira, T., Wilson, S.R., Choi, Y.G., Risso, D., Dudoit, S., Speed, T.P., Ngai, J., 2014. Silencing of odorant receptor genes by G protein βγ signaling ensures the expression of one odorant receptor per olfactory sensory neuron. Neuron 81, 847-859.
|
[5] |
Frazee, A.C., Jaffe, A.E., Langmead, B., Leek, J.T., 2015. Polyester: simulating RNA-seq datasets with differential transcript expression. Bioinformatics 31, 2778-2784.
|
[6] |
Giuliani, A., 2017. The application of principal component analysis to drug discovery and biomedical data. Drug Discov. Today 22, 1069-1076.
|
[7] |
Goh, W.W.B., Sng, J.C., Yee, J.Y., See, Y.M., Lee, T.S., Wong, L., Lee, J., 2017. Can peripheral blood-derived gene expressions characterize individuals at ultra-high risk for psychosis? Comput. Psychiatr. 1, 168-183.
|
[8] |
Goh, W.W.B., Wang, W., Wong, L., 2017. Why batch effects matter in omics data, and how to avoid them. Trends Biotechnol. 35, 498-507.
|
[9] |
Goh, W.W.B., Wong, L., 2017. Protein complex-based analysis is resistant to the obfuscating consequences of batch effects --- a case study in clinical proteomics. BMC Genomics 18, 142-142.
|
[10] |
Goh, W.W.B., Wong, L., 2018. Dealing with Confounders in Omics Analysis. Trends Biotechnol. 36, 488-498.
|
[11] |
Hatzi, K., Geng, H., Doane, A.S., Meydan, C., LaRiviere, R., Cardenas, M., Duy, C., Shen, H., Vidal, M.N.C., Baslan, T., Mohammad, H.P., Kruger, R.G., Shaknovich, R., Haberman, A.M., Inghirami, G., Lowe, S.W., Melnick, A.M., 2019. Histone demethylase LSD1 is required for germinal center formation and BCL6-driven lymphomagenesis. Nat. Immunol. 20, 86-96.
|
[12] |
Hornung, R., Boulesteix, A.-L., Causeur, D., 2016. Combining location-and-scale batch effect adjustment with data cleaning by latent factor adjustment. BMC Bioinformatics 17, 27.
|
[13] |
Isogai, Y., Wu, Z., Love, M.I., Ahn, M.H., Bambah-Mukku, D., Hua, V., Farrell, K., Dulac, C., 2018. Multisensory logic of infant-directed aggression by males. Cell 175, 1827-1841.
|
[14] |
Jaffe, A.E., Hyde, T., Kleinman, J., Weinbergern, D.R., Chenoweth, J.G., McKay, R.D., Leek, J.T., Colantuoni, C., 2015. Practical impacts of genomic data "cleaning" on biological discovery using surrogate variable analysis. BMC Bioinformatics 16, 372.
|
[15] |
Johnson, W.E., Li, C., Rabinovic, A., 2007. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118-127.
|
[16] |
Langley, S.R., Mayr, M., 2015. Comparative analysis of statistical methods used for detecting differential expression in label-free mass spectrometry proteomics. J. Proteomics 129, 83-92.
|
[17] |
Lazar, C., Meganck, S., Taminau, J., Steenhoff, D., Coletta, A., Molter, C., Weiss-Solis, D.Y., Duque, R., Bersini, H., Nowe, A., 2012. Batch effect removal methods for microarray gene expression data integration: a survey. Brief. Bioinform. 14, 469-490.
|
[18] |
Leek, J.T., 2014. svaseq: removing batch effects and other unwanted noise from sequencing data. Nucleic acids Res. 42, e161.
|
[19] |
Leek, J.T., Johnson, W.E., Parker, H.S., Jaffe, A.E., Storey, J.D., 2012. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28, 882-883.
|
[20] |
Leek, J.T., Scharpf, R.B., Bravo, H.C., Simcha, D., Langmead, B., Johnson, W.E., Geman, D., Baggerly, K., Irizarry, R.A., 2010. Tackling the widespread and critical impact of batch effects in high-throughput data. Nat. Rev. Genet. 11, 733-739.
|
[21] |
Leek, J.T., Storey, J.D., 2007. Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet. 3, 1724-1735.
|
[22] |
Luo, J., Schumacher, M., Scherer, A., Sanoudou, D., Megherbi, D., Davison, T., Shi, T., Tong, W., Shi, L., Hong, H., Zhao, C., Elloumi, F., Shi, W., Thomas, R., Lin, S., Tillinghast, G., Liu, G., Zhou, Y., Herman, D., Li, Y., Deng, Y., Fang, H., Bushel, P., Woods, M., Zhang, J., 2010. A comparison of batch effect removal methods for enhancement of prediction performance using MAQC-II microarray gene expression data. Pharmacogenomics J. 10, 278-291.
|
[23] |
Nygaard, V., Rodland, E.A., Hovig, E., 2016. Methods that remove batch effects while retaining group differences may lead to exaggerated confidence in downstream analyses. Biostatistics 17, 29-39.
|
[24] |
Oytam, Y., Sobhanmanesh, F., Duesing, K., Bowden, J.C., Osmond-McLeod, M., Ross, J., 2016. Risk-conscious correction of batch effects: maximising information extraction from high-throughput genomic datasets. BMC Bioinformatics 17, 332.
|
[25] |
Reese, S.E., Archer, K.J., Therneau, T.M., Atkinson, E.J., Vachon, C.M., de Andrade, M., Kocher, J.-P.A., Eckel-Passow, J.E., 2013. A new statistic for identifying batch effects in high-throughput genomic data that uses guided principal component analysis. Bioinformatics 29, 2877-2883.
|
[26] |
Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J.C., Muller, M., 2011. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 12, 77.
|
[27] |
Sanchez-Illana, A., Pineiro-Ramos, J.D., Sanjuan-Herraez, J.D., Vento, M., Quintas, G., Kuligowski, J., 2018. Evaluation of batch effect elimination using quality control replicates in LC-MS metabolite profiling. Anal. Chim. Acta 1019, 38-48.
|
[28] |
Shao, C., Liu, Y., Ruan, H., Li, Y., Wang, H., Kohl, F., Goropashnaya, A.V., Fedorov, V.B., Zeng, R., Barnes, B.M., Yan, J., 2010. Shotgun proteomics analysis of hibernating arctic ground squirrels. Mol. Cell Proteomics 9, 313-326.
|
[29] |
Sims, A.H., Smethurst, G.J., Hey, Y., Okoniewski, M.J., Pepper, S.D., Howell, A., Miller, C.J., Clarke, R.B., 2008. The removal of multiplicative, systematic bias allows integration of breast cancer gene expression datasets - improving meta-analysis and prediction of prognosis. BMC Med. Genomics 1, 42.
|
[30] |
Sing, T., Sander, O., Beerenwinkel, N., Lengauer, T., 2005. ROCR: visualizing classifier performance in R. Bioinformatics 21, 3940-3941.
|