[1] |
Aslanidis, C., de Jong, P.J., 1990. Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res. 18, 6069-6074.
|
[2] |
Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., Zhang, F., 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823.
|
[3] |
Fehr, A.R., Athmer, J., Channappanavar, R., Phillips, J.M., Meyerholz, D.K., Perlman, S., 2015. The nsp3 macrodomain promotes virulence in mice with coronavirus-induced encephalitis. J. Virol. 89, 1523-1536.
|
[4] |
Javed, M.R., Sadaf, M., Ahmed, T., Jamil, A., Nawaz, M., Abbas, H., Ijaz, A., 2018. CRISPR-Cas system: History and prospects as a genome editing tool in microorganisms. Curr. Microbiol. 75, 1675-1683.
|
[5] |
Lauritsen, I., Kim, S.H., Porse, A., Norholm, M.H.H., 2018. Standardized cloning and curing of plasmids. Methods Mol. Biol. 1772, 469-476.
|
[6] |
Lee, E.C., Yu, D., Martinez de Velasco, J., Tessarollo, L., Swing, D.A., Court, D.L., Jenkins, N.A., Copeland, N.G., 2001. A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73, 56-65.
|
[7] |
Li, M.Z., Elledge, S.J., 2005. MAGIC, an in vivo genetic method for the rapid construction of recombinant DNA molecules. Nat. Genet. 37, 311-319.
|
[8] |
Li, M.Z., Elledge, S.J., 2007. Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat. Methods 4, 251-256.
|
[9] |
Mainou, B.A., Zamora, P.F., Ashbrook, A.W., Dorset, D.C., Kim, K.S., Dermody, T.S., 2013. Reovirus cell entry requires functional microtubules. mBio 4, e00405-e00413.
|
[10] |
Mao, X.J., Yan, M.Y., Zhu, H., Guo, X.P., Sun, Y.C., 2016. Efficient and simple generation of multiple unmarked gene deletions in Mycobacterium smegmatis. Sci. Rep. 6, 22922.
|
[11] |
Rivero-Muller, A., Lajic, S., Huhtaniemi, I., 2007. Assisted large fragment insertion by Red/ET-recombination (ALFIRE)-an alternative and enhanced method for large fragment recombineering. Nucleic Acids Res. 35, e78.
|
[12] |
Thomason, L.C., Costantino, N., Shaw, D.V., Court, D.L., 2007. Multicopy plasmid modification with phage λ Red recombineering. Plasmid 58, 148-158.
|
[13] |
Xia, Y., Li, K., Li, J., Wang, T., Gu, L., Xun, L., 2018. T5 exonuclease-dependent assembly offers a low-cost method for efficient cloning and site-directed mutagenesis. Nucleic Acids Res. 47, e15.
|
[14] |
Yan, M.Y., Yan, H.Q., Ren, G.X., Zhao, J.P., Guo, X.P., Sun, Y.C., 2017. CRISPR-Cas12a-assisted recombineering in bacteria. Appl. Environ. Microbiol. 83, e00947-17.
|
[15] |
Yu, D., Ellis, H.M., Lee, E.C., Jenkins, N.A., Copeland, N.G., Court, D.L., 2000. An efficient recombination system for chromosome engineering in Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 97, 5978-5983.
|
[16] |
Zhang, N., Zhao, H., Zhang, L., 2019. Fatty acid synthase promotes the palmitoylation of chikungunya virus nsP1. J. Virol. 93, e01747-18.
|
[17] |
Zhang, Y., Muyrers, J.P., Testa, G., Stewart, A.F., 2000. DNA cloning by homologous recombination in Escherichia coli. Nat. Biotechnol. 18, 1314-1317.
|