5.9
CiteScore
5.9
Impact Factor
Volume 46 Issue 7
Jul.  2019
Turn off MathJax
Article Contents

Gene redundancy and gene compensation: An updated view

doi: 10.1016/j.jgg.2019.07.001
More Information
  • Corresponding author: E-mail address: pengjr@zju.edu.cn (Jinrong Peng)
  • Received Date: 2019-06-18
  • Accepted Date: 2019-07-09
  • Rev Recd Date: 2019-07-09
  • Available Online: 2019-07-19
  • Publish Date: 2019-07-20
  • Gene knockdown approaches using antisense oligo nucleotides or analogs such as siRNAs and morpholinos have been widely adopted to study gene functions although the off-target issue has been always a concern in these studies. On the other hand, classic genetic analysis relies on the availability of loss-of-function or gain-of-function mutants. The fast development of genome editing technologies such as TALEN and CRISPR/Cas9 has greatly facilitated the generation of null mutants for the functional studies of target genes in a variety of organisms such as zebrafish. Surprisingly, an unexpected discrepancy was observed between morphant phenotype and mutant phenotype for many genes in zebrafish, i.e., while the morphant often displays an obvious phenotype, the corresponding null mutant appears relatively normal or only exhibits a mild phenotype due to gene compensation. Two recent reports have partially answered this intriguing question by showing that a pre-mature termination codon and homologous sequence are required to elicit the gene compensation and the histone modifying complex COMPASS is involved in activating the expression of the compensatory genes. Here, I summarize these exciting new progress and try to redefine the concept of genetic compensation and gene compensation.
  • loading
  • [1]
    Adams M.D., Celniker S.E., Holt R.A., Evans C.A., Gocayne J.D., Amanatides P.G., Scherer S.E., Li P.W., Hoskins R.A., Galle R.F., George R.A., Lewis S.E., Richards S., Ashburner M., Henderson S.N., Sutton G.G., Wortman J.R., Yandell M.D., Zhang Q., Chen L.X., Brandon R.C., Rogers Y.H., Blazej R.G., Champe M., Pfeiffer B.D., Wan K.H., Doyle C., Baxter E.G., Helt G., Nelson C.R., Gabor G.L., Abril J.F., Agbayani A., An H.J., Andrews-Pfannkoch C., Baldwin D., Ballew R.M., Basu A., Baxendale J., Bayraktaroglu L., Beasley E.M., Beeson K.Y., Benos P.V., Berman B.P., Bhandari D., Bolshakov S., Borkova D., Botchan M.R., Bouck J., Brokstein P., Brottier P., Burtis K.C., Busam D.A., Butler H., Cadieu E., Center A., Chandra I., Cherry J.M., Cawley S., Dahlke C., Davenport L.B., Davies P., de Pablos B., Delcher A., Deng Z., Mays A.D., Dew I., Dietz S.M., Dodson K., Doup L.E., Downes M., Dugan-Rocha S., Dunkov B.C., Dunn P., Durbin K.J., Evangelista C.C., Ferraz C., Ferriera S., Fleischmann W., Fosler C., Gabrielian A.E., Garg N.S., Gelbart W.M., Glasser K., Glodek A., Gong F., Gorrell J.H., Gu Z., Guan P., Harris M., Harris N.L., Harvey D., Heiman T.J., Hernandez J.R., Houck J., Hostin D., Houston K.A., Howland T.J., Wei M.H. & Ibegwam C. (2000) The genome sequence of Drosophila melanogaster. Science 287, 2185-2195.
    [2]
    Anderson J.L., Mulligan T.S., Shen M.C., Wang H., Scahill C.M., Tan F.J., Du SJ, Busch-Nentwich E.M. & Farber S.A. (2017) mRNA processing in mutant zebrafish lines generated by chemical and CRISPR-mediated mutagenesis produces unexpected transcripts that escape nonsense-mediated decay. PLoS Genet. 13, e1007105.
    [3]
    Arabidopsis Genome Initiative. (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796-815.
    [4]
    Chang N., Sun C., Gao L., Zhu D., Xu X., Zhu X., Xiong J.W. & Xi J.J. (2013) Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res. 23, 465-472.
    [5]
    Cheng H., Qin L., Lee S., Fu X., Richards D.E., Cao D., Luo D., Harberd N.P. & Peng J. (2004) Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function. Development, 131, 1055-1064.
    [6]
    Driever W., Solnica-Krezel L., Schier A.F., Neuhauss S.C., Malicki J., Stemple D.L., Stainier D.Y., Zwartkruis F., Abdelilah S., Rangini Z., Belak J. & Boggs C. (1996) A genetic screen for mutations affecting embryogenesis in zebrafish. Development, 123, 37-46.
    [7]
    El-Brolosy M.A., Kontarakis Z., Rossi A., Kuenne C., Gunther S., Fukuda N., Kikhi K., Boezio G., Takacs C.M., Lai S.L., Fukuda R., Gerri C., Giraldez A.J. & Stainier D. (2019) Genetic compensation triggered by mutant mRNA degradation. Nature, 568, 193-197.
    [8]
    C. elegans Sequencing Consortium. (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012-2018.
    [9]
    Goffeau A., Barrell B.G., Bussey H., Davis R.W., Dujon B., Feldmann H., Galibert F., Hoheisel J.D., Jacq C., Johnston M., Louis E.J., Mewes H.W., Murakami Y., Philippsen P., Tettelin H. & Oliver S.G. (1996) Life with 6000 genes. Science 274, 546, 563-567.
    [10]
    Guan Y., Huang D., Chen F., Gao C., Tao T., Shi H., Zhao S., Liao Z., Lo L.J., Wang Y., Chen J. & Peng J. (2016) Phosphorylation of Def regulates nucleolar p53 turnover and cell cycle progression through Def recruitment of Calpain3. PLoS Biol. 14, e1002555.
    [11]
    Haffter P., Granato M., Brand M., Mullins M.C., Hammerschmidt M., Kane D.A., Odenthal J., van Eeden F.J., Jiang Y.J., Heisenberg C.P., Kelsh R.N., Furutani-Seiki M., Vogelsang E., Beuchle D., Schach U., Fabian C. & Nusslein-Volhard C. (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development, 123, 1-36.
    [12]
    Howe K., Clark M.D., Torroja C.F., Torrance J., Berthelot C., Muffato M., Collins J.E., Humphray S., McLaren K., Matthews L., McLaren S., Sealy I., Caccamo M., Churcher C., Scott C., Barrett J.C., Koch R., Rauch G.J., White S., Chow W., Kilian B., Quintais L.T., Guerra-Assuncao J.A., Zhou Y., Gu Y., Yen J., Vogel J.H., Eyre T., Redmond S., Banerjee R., Chi J., Fu B., Langley E., Maguire S.F., Laird G.K., Lloyd D., Kenyon E., Donaldson S., Sehra H., Almeida-King J., Loveland J., Trevanion S., Jones M., Quail M., Willey D., Hunt A., Burton J., Sims S., McLay K., Plumb B., Davis J., Clee C., Oliver K., Clark R., Riddle C., Elliot D., Threadgold G., Harden G., Ware D., Begum S., Mortimore B., Kerry G., Heath P., Phillimore B., Tracey A., Corby N., Dunn M., Johnson C., Wood J., Clark S., Pelan S., Griffiths G., Smith M., Glithero R., Howden P., Barker N., Lloyd C., Stevens C., Harley J., Holt K., Panagiotidis G., Lovell J., Beasley H., Henderson C., Gordon D., Auger K., Wright D., Collins J., Raisen C., Dyer L., Leung K., Robertson L., Ambridge K., Leongamornlert D., McGuire S., Gilderthorp R., Griffiths C., Manthravadi D., Nichol S. & Barker G. (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496, 498-503.
    [13]
    Huang P., Zhu Z., Lin S. & Zhang B. (2012) Reverse genetic approaches in zebrafish. J. Genet. Genomics 39, 421-433.
    [14]
    Hwang W.Y., Fu Y., Reyon D., Maeder M.L., Tsai S.Q., Sander J.D., Peterson R.T., Yeh J.R. & Joung J.K. (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 31, 227-229.
    [15]
    Kok F.O., Shin M., Ni C.W., Gupta A., Grosse A.S., van Impel A., Kirchmaier B.C., Peterson-Maduro J., Kourkoulis G., Male I., DeSantis D.F., Sheppard-Tindell S., Ebarasi L., Betsholtz C., Schulte-Merker S., Wolfe S.A. & Lawson N.D. (2015) Reverse genetic screening reveals poor correlation between morpholino-induced and mutant phenotypes in zebrafish. Dev. Cell 32, 97-108.
    [16]
    Lalonde S., Stone O.A., Lessard S., Lavertu A., Desjardins J., Beaudoin M., Rivas M., Stainier D. & Lettre G. (2017) Frameshift indels introduced by genome editing can lead to in-frame exon skipping. PLoS One, 12, e178700.
    [17]
    Lee S., Cheng H., King K.E., Wang W., He Y., Hussain A., Lo J., Harberd N.P. & Peng J. (2002) Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition. Genes Dev. 16, 646-658.
    [18]
    Lo J., Lee S., Xu M., Liu F., Ruan H., Eun A., He Y., Ma W., Wang W., Wen Z. & Peng J. (2003) 15000 unique zebrafish EST clusters and their future use in microarray for profiling gene expression patterns during embryogenesis. Genome Res. 13, 455-466.
    [19]
    Lykke-Andersen S. & Jensen T.H. (2015) Nonsense-mediated mRNA decay: an intricate machinery that shapes transcriptomes. Nat. Rev. Mol. Cell Biol. 16, 665-677.
    [20]
    Lykke-Andersen J., Shu M.D. & Steitz J.A. (2000) Human Upf proteins target an mRNA for nonsense-mediated decay when bound downstream of a termination codon. Cell 103, 1121-1131.
    [21]
    Ma Z., Zhu P., Shi H., Guo L., Zhang Q., Chen Y., Chen S., Zhang Z., Peng J. & Chen J. (2019) PTC-bearing mRNA elicits a genetic compensation response via Upf3a and COMPASS components. Nature, 568, 259-263.
    [22]
    Nasevicius A. & Ekker S.C. (2000) Effective targeted gene 'knockdown' in zebrafish. Nat. Genet. 26, 216-220.
    [23]
    Parker L.H., Schmidt M., Jin S.W., Gray A.M., Beis D., Pham T., Frantz G., Palmieri S., Hillan K., Stainier D.Y., De Sauvage F.J. & Ye W. (2004) The endothelial-cell-derived secreted factor Egfl7 regulates vascular tube formation. Nature, 428, 754-758.
    [24]
    Peng J., Carol P., Richards D.E., King K.E., Cowling R.J., Murphy G.P. & Harberd N.P. (1997) The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev. 11, 3194-3205.
    [25]
    Peng J., Zhang J. & Meng A. (2012) The tiny zebrafish keep swimming fast in the developmental biology pond. J. Genet. Genomics 39, 419-420.
    [26]
    Qu Q., Takahashi Y.H., Yang Y., Hu H., Zhang Y., Brunzelle J.S., Couture J.F., Shilatifard A. & Skiniotis G. (2018) Structure and conformational dynamics of a COMPASS histone H3K4 methyltransferase complex. Cell 174, 1117-1126.
    [27]
    Robu M.E., Larson J.D., Nasevicius A., Beiraghi S., Brenner C., Farber S.A. & Ekker S.C. (2007) p53 activation by knockdown technologies. PLoS Genet. 3, e78.
    [28]
    Rossi A., Kontarakis Z., Gerri C., Nolte H., Holper S., Kruger M. & Stainier D.Y. (2015) Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature, 524, 230-233.
    [29]
    Shilatifard A. (2012) The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu. Rev. Biochem. 81, 65-95.
    [30]
    Shum E.Y., Jones S.H., Shao A., Dumdie J., Krause M.D., Chan W.K., Lou C.H., Espinoza J.L., Song H.W., Phan M.H., Ramaiah M., Huang L., McCarrey J.R., Peterson K.J., De Rooij D.G., Cook-Andersen H. & Wilkinson M.F. (2016) The antagonistic gene paralogs Upf3a and Upf3b govern nonsense-mediated RNA decay. Cell 165, 382-395.
    [31]
    Summerton J.E. (2007) Morpholino, siRNA, and S-DNA compared: impact of structure and mechanism of action on off-target effects and sequence specificity. Curr. Top Med. Chem. 7, 651-660.
    [32]
    Summerton J. & Weller D. (1997) Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev. 7, 187-195.
    [33]
    Tao T., Shi H., Guan Y., Huang D., Chen Y., Lane D.P., Chen J. & Peng J. (2013) Def defines a conserved nucleolar pathway that leads p53 to proteasome-independent degradation. Cell Res. 23, 620-634.
    [34]
    Zhu P., Ma Z., Guo L., Zhang W., Zhang Q., Zhao T., Jiang K., Peng J. & Chen J. (2017) Short body length phenotype is compensated by the upregulation of nidogen family members in a deleterious nid1a mutation of zebrafish. J. Genet. Genomics 44, 553-556.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (80) PDF downloads (5) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return