5.9
CiteScore
5.9
Impact Factor
Volume 46 Issue 8
Aug.  2019
Turn off MathJax
Article Contents

Blocking CD38-driven fratricide among T cells enables effective antitumor activity by CD38-specific chimeric antigen receptor T cells

doi: 10.1016/j.jgg.2019.06.007
More Information
  • Corresponding author: E-mail address: wuzhiqiang1006@163.com (Zhiqiang Wu); E-mail address: hanwdrsw69@yahoo.com (Weidong Han)
  • Received Date: 2019-04-03
  • Accepted Date: 2019-06-17
  • Rev Recd Date: 2019-06-09
  • Available Online: 2019-08-13
  • Publish Date: 2019-08-20
  • Chimeric antigen receptor T-cell (CAR T) therapy is a kind of effective cancer immunotherapy. However, designing CARs remains a challenge because many targetable antigens are shared by T cells and tumor cells. This shared expression of antigens can cause CAR T cell fratricide. CD38-targeting approaches (e.g., daratumumab) have been used in clinical therapy and have shown promising results. CD38 is a kind of surface glycoprotein present in a variety of cells, such as T lymphocytes and tumor cells. It was previously reported that CD38-based CAR T cells may undergo apoptosis or T cell-mediated killing (fratricide) during cell manufacturing. In this study, a CAR containing a sequence targeting human CD38 was designed to be functional. To avoid fratricide driven by CD38 and ensure the production of CAR T cells, two distinct strategies based on antibodies (clone MM12T or clone MM27) or proteins (H02H or H08H) were used to block CD38 or the CAR single-chain variable fragment (scFv) domain, respectively, on the T cell surface. The results indicated that the antibodies or proteins, especially the antibody MM27, could affect CAR T cells by inhibiting fratricide while promoting expansion and enrichment. Anti-CD38 CAR T cells exhibited robust and specific cytotoxicity to CD38+ cell lines and tumor cells. Furthermore, the levels of the proinflammatory factors TNF-α, IFN-γ and IL-2 were significantly upregulated in the supernatants of A549CD38+ cells. Finally, significant control of disease progression was demonstrated in xenograft mouse models. In conclusion, these findings will help to further enhance the expansion, persistence and function of anti-CD38 CAR T cells in subsequent clinical trials.
  • loading
  • [1]
    Alcantara, M., Tesio, M., June, C.H., Houot, R., 2018. CAR T-cells for T-cell malignancies: challenges in distinguishing between therapeutic, normal, and neoplastic T-cells. Leukemia 32, 2307-2315.
    [2]
    An, N., Hou, Y.N., Zhang, Q.X., Li, T., Zhang, Q.L., Fang, C., Chen, H., Lee, H.C., Zhao, Y.J., Du, X., 2018. Anti-multiple myeloma activity of nanobody-based anti-CD38 chimeric antigen receptor T cells. Mol. Pharm. 15, 4577-4588.
    [3]
    Atanackovic, D., Steinbach, M., Radhakrishnan, S.V., Luetkens, T., 2016. Immunotherapies targeting CD38 in multiple myeloma. Oncoimmunology 5, e1217374.
    [4]
    Banerjee, H., Kane, L.P., 2018. Immune regulation by Tim-3. F1000Res. 7, 316.
    [5]
    Bannas, P., Koch-Nolte, F., 2018. Perspectives for the development of CD38-Specific heavy chain antibodies as therapeutics for multiple myeloma. Front. Immunol. 9, 2559.
    [6]
    Blatt, K., Menzl, I., Eisenwort, G., Cerny-Reiterer, S., Herrmann, H., Herndlhofer, S., Stefanzl, G., Sadovnik, I., Berger, D., Keller, A., Hauswirth, A., Hoermann, G., Willmann, M., Rulicke, T., Sill, H., Sperr, W.R., Mannhalter, C., Melo, J.V., Jager, U., Sexl, V., Valent, P., 2018. Phenotyping and target expression profiling of CD34+/CD38- and CD34+/CD38+ stem- and progenitor cells in acute lymphoblastic leukemia. Neoplasia 20, 632-642.
    [7]
    Bonello, F., D'Agostino, M., Moscvin, M., Cerrato, C., Boccadoro, M., Gay, F., 2018. CD38 as an immunotherapeutic target in multiple myeloma. Expert Opin. Biol. Ther. 18, 1209-1221.
    [8]
    Breman, E., Demoulin, B., Agaugue, S., Mauen, S., Michaux, A., Springuel, L., Houssa, J., Huberty, F., Jacques-Hespel, C., Marchand, C., Marijsse, J., Nguyen, T., Ramelot, N., Violle, B., Daro, D., De Waele, P., Gilham, D.E., Steenwinckel, V., 2018. Overcoming target driven fratricide for T cell therapy. Front. Immunol. 9, 2940.
    [9]
    Brudno, J.N., Kochenderfer, J.N., 2019. Recent advances in CAR T-cell toxicity: mechanisms, manifestations and management. Blood Rev. 34, 45-55.
    [10]
    Caccamo, N., Joosten, S.A., Ottenhoff, T.H.M., Dieli, F., 2018. Atypical human effector/memory CD4(+) T cells with a naive-like phenotype. Front. Immunol. 9, 2832.
    [11]
    Catakovic, K., Klieser, E., Neureiter, D., Geisberger, R., 2017. T cell exhaustion: from pathophysiological basics to tumor immunotherapy. Cell Commun. Signal. 15, 1.
    [12]
    Chehab, S., Panjic, E.H., Gleason, C., Lonial, S., Nooka, A.K., 2018. Daratumumab and its use in the treatment of relapsed and/or refractory multiple myeloma. Future Oncol. 14, 3111-3121.
    [13]
    Chini, E.N., Chini, C.C.S., Espindola Netto, J.M., de Oliveira, G.C., van Schooten, W., 2018. The pharmacology of CD38/NADase: an emerging target in cancer and diseases of aging. Trends Pharmacol. Sci. 39, 424-436.
    [14]
    Crowley, L.C., Marfell, B.J., Scott, A.P., Waterhouse, N.J., 2016. Quantitation of apoptosis and necrosis by annexin V binding, propidium iodide uptake, and flow cytometry. Cold Spring Harb. Protoc. 2016. https://doi.org/10.1101/pdb.prot087288
    [15]
    Drent, E., Groen, R.W., Noort, W.A., Themeli, M., Lammerts van Bueren, J.J., Parren, P.W., Kuball, J., Sebestyen, Z., Yuan, H., de Bruijn, J., van de Donk, N.W., Martens, A.C., Lokhorst, H.M., Mutis, T., 2016. Pre-clinical evaluation of CD38 chimeric antigen receptor engineered T cells for the treatment of multiple myeloma. Haematologica 101, 616-625.
    [16]
    Feng, K.C., Guo, Y.L., Liu, Y., Dai, H.R., Wang, Y., Lv, H.Y., Huang, J.H., Yang, Q.M., Han, W.D., 2017. Cocktail treatment with EGFR-specific and CD133-specific chimeric antigen receptor-modified T cells in a patient with advanced cholangiocarcinoma. J. Hematol. Oncol. 10, 4.
    [17]
    Golubovskaya, V., Wu, L., 2016. Different subsets of T cells, memory, effector functions, and CAR-T immunotherapy. Cancers (Basel). 8, 36.
    [18]
    Han, X., Wang, Y., Han, W.D., 2018. Chimeric antigen receptor modified T-cells for cancer treatment. Chronic Dis. Transl. Med. 4, 225-243.
    [19]
    Kloss, S., Oberschmidt, O., Dahlke, J., Vu, X.K., Neudoerfl, C., Kloos, A., Gardlowski, T., Matthies, N., Heuser, M., Meyer, J., Sauer, M., Falk, C., Koehl, U., Schambach, A., Morgan, M.A., 2019. Preclinical assessment of suitable natural killer (NK) cell sources for chimeric antigen receptor (CAR)-NK-based "off-the-shelf" AML immunotherapies. Hum. Gene Ther. 30, https://doi.org/10.1089/hum.2018.247
    [20]
    Lorenzo-Herrero, S., Sordo-Bahamonde, C., Gonzalez, S., Lopez-Soto, A., 2019. CD107a degranulation assay to evaluate immune cell antitumor activity. Methods Mol. Biol. 1884, 119-130.
    [21]
    McHayleh, W., Bedi, P., Sehgal, R., Solh, M., 2019. Chimeric antigen receptor T-cells: the future is now. J. Clin. Med. 8, pii: E207.
    [22]
    Mele, S., Devereux, S., Pepper, A.G., Infante, E., Ridley, A.J., 2018. Calcium-RasGRP2-Rap1 signaling mediates CD38-induced migration of chronic lymphocytic leukemia cells. Blood Adv. 2, 1551-1561.
    [23]
    Mihara, K., Bhattacharyya, J., Kitanaka, A., Yanagihara, K., Kubo, T., Takei, Y., Asaoku, H., Takihara, Y., Kimura, A., 2012. T-cell immunotherapy with a chimeric receptor against CD38 is effective in eliminating myeloma cells. Leukemia 26, 365-367.
    [24]
    Mihara, K., Yanagihara, K., Takigahira, M., Imai, C., Kitanaka, A., Takihara, Y., Kimura, A., 2009. Activated T-cell-mediated immunotherapy with a chimeric receptor against CD38 in B-cell non-Hodgkin lymphoma. J. Immunother. 32, 737-743.
    [25]
    Mihara, K., Yanagihara, K., Takigahira, M., Kitanaka, A., Imai, C., Bhattacharyya, J., Kubo, T., Takei, Y., Yasunaga, S., Takihara, Y., Kimura, A., 2010. Synergistic and persistent effect of T-cell immunotherapy with anti-CD19 or anti-CD38 chimeric receptor in conjunction with rituximab on B-cell non-Hodgkin lymphoma. Br. J. Haematol. 151, 37-46.
    [26]
    Miyawaki, K., Iwasaki, H., Jiromaru, T., Kusumoto, H., Yurino, A., Sugio, T., Uehara, Y., Odawara, J., Daitoku, S., Kunisaki, Y., Mori, Y., Arinobu, Y., Tsuzuki, H., Kikushige, Y., Iino, T., Kato, K., Takenaka, K., Miyamoto, T., Maeda, T., Akashi, K., 2017. Identification of unipotent megakaryocyte progenitors in human hematopoiesis. Blood 129, 3332-3343.
    [27]
    Morandi, F., Horenstein, A.L., Costa, F., Giuliani, N., Pistoia, V., Malavasi, F., 2018. CD38: A target for immunotherapeutic approaches in multiple myeloma. Front. Immunol. 9, 2722.
    [28]
    Naik, J., Themeli, M., de Jong-Korlaar, R., Ruiter, R.W.J., Poddighe, P.J., Yuan, H., de Bruijn, J.D., Ossenkoppele, G.J., Zweegman, S., Smit, L., Mutis, T., Martens, A.C.M., van de Donk, N., Groen, R.W.J., 2018. CD38 as a therapeutic target for adult acute myeloid leukemia and T-cell acute lymphoblastic leukemia. Haematologica 104, e100-e103
    [29]
    Pick, M., Vainstein, V., Goldschmidt, N., Lavie, D., Libster, D., Gural, A., Grisariu, S., Avni, B., Ben Yehuda, D., Gatt, M.E., 2018. Daratumumab resistance is frequent in advanced-stage multiple myeloma patients irrespective of CD38 expression and is related to dismal prognosis. Eur. J. Haematol. 100, 494-501.
    [30]
    Plesner, T., Krejcik, J., 2018. Daratumumab for the treatment of multiple myeloma. Front. Immunol. 9, 1228.
    [31]
    Roddie, C., O'Reilly, M., Dias Alves Pinto, J., Vispute, K., Lowdell, M., 2019. Manufacturing chimeric antigen receptor T cells: issues and challenges. Cytotherapy 21, 327-340.
    [32]
    Sommermeyer, D., Hudecek, M., Kosasih, P.L., Gogishvili, T., Maloney, D.G., Turtle, C.J., Riddell, S.R., 2016. Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo. Leukemia 30, 492-500.
    [33]
    van de Donk, N., 2018. Immunomodulatory effects of CD38-targeting antibodies. Immunol. Lett. 199, 16-22.
    [34]
    van de Donk, N., Usmani, S.Z., 2018. CD38 antibodies in multiple myeloma: mechanisms of action and modes of resistance. Front. Immunol. 9, 2134.
    [35]
    Wang, J., Hu, Y., Huang, H., 2017. Acute lymphoblastic leukemia relapse after CD19-targeted chimeric antigen receptor T cell therapy. J. Leukoc. Biol. 102, 1347-1356.
    [36]
    Wang, Q.S., Wang, Y., Lv, H.Y., Han, Q.W., Fan, H., Guo, B., Wang, L.L., Han, W.D., 2015. Treatment of CD33-directed chimeric antigen receptor-modified T cells in one patient with relapsed and refractory acute myeloid leukemia. Mol. Ther. 23, 184-191.
    [37]
    Xu, M., McCanna, D.J., Sivak, J.G., 2015. Use of the viability reagent prestoplue in comparison with alamarblue and MTT to assess the viability of human corneal epithelial cells. J. Pharmacol. Toxicol. Methods 71, 1-7.
    [38]
    Zaja, F., Tabanelli, V., Agostinelli, C., Calleri, A., Chiappella, A., Varettoni, M., Luigi Zinzani, P., Volpetti, S., Sabattini, E., Fanin, R., Pileri, S.A., 2017. CD38, BCL-2, PD-1, and PD-1L expression in nodal peripheral T-cell lymphoma: Possible biomarkers for novel targeted therapies? Am. J. Hematol. 92, E1-E2.
    [39]
    Zhang, C., Kasi, A., 2018. Chimeric antigen receptor (CAR) T-cell therapy, StatPearls, Treasure Island (FL).
    [40]
    Zhang, W.Y., Wang, Y., Guo, Y.L., Dai, H.R., Yang, Q.M., Zhang, Y.J., Zhang, Y., Chen, M.X., Wang, C.M., Feng, K.C., Li, S.X., Liu, Y., Shi, F.X., Luo, C., Han, W.D., 2016. Treatment of CD20-directed chimeric antigen receptor-modified T cells in patients with relapsed or refractory B-cell non-Hodgkin lymphoma: an early phase IIa trial report. Signal Transduct. Target. Ther. 1, 16002.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (110) PDF downloads (1) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return