5.9
CiteScore
5.9
Impact Factor
Volume 46 Issue 8
Aug.  2019
Turn off MathJax
Article Contents

OSBPL2-disrupted pigs recapitulate dual features of human hearing loss and hypercholesterolaemia

doi: 10.1016/j.jgg.2019.06.006
More Information
  • Corresponding author: E-mail address: caoxin@njmu.edu.cn (Xin Cao); E-mail address: daiyifan@njmu.edu.cn (Yifan Dai)
  • Received Date: 2019-03-12
  • Accepted Date: 2019-06-04
  • Rev Recd Date: 2019-06-03
  • Available Online: 2019-08-13
  • Publish Date: 2019-08-20
  • Oxysterol binding protein like 2 (OSBPL2), an important regulator in cellular lipid metabolism and transport, was identified as a novel deafness-causal gene in our previous work. To resemble the phenotypic features of OSBPL2 mutation in animal models and elucidate the potential genotype-phenotype associations, the OSBPL2-disrupted Bama miniature (BM) pig model was constructed using CRISPR/Cas9-mediated gene editing, somatic cell nuclear transfer (SCNT) and embryo transplantation approaches, and then subjected to phenotypic characterization of auditory function and serum lipid profiles. The OSBPL2-disrupted pigs displayed progressive hearing loss (HL) with degeneration/apoptosis of cochlea hair cells (HCs) and morphological abnormalities in HC stereocilia, as well as hypercholesterolaemia. High-fat diet (HFD) feeding aggravated the development of HL and led to more severe hypercholesterolaemia. The dual phenotypes of progressive HL and hypercholesterolaemia resembled in OSBPL2-disrupted pigs confirmed the implication of OSBPL2 mutation in nonsydromic hearing loss (NSHL) and contributed to the potential linkage between auditory dysfunction and dyslipidaemia/hypercholesterolaemia.
  • These authors contributed equally to this work.
  • loading
  • [1]
    Aghazadeh-Attari, J., Mansorian, B., Mirza-Aghazadeh-Attari, M., Ahmadzadeh, J., Mohebbi, I., 2017. Association between metabolic syndrome and sensorineural hearing loss: a cross-sectional study of 11,114 participants. Diabetes Metab. Syndr. Obes. 10, 459-465.
    [2]
    Bendixen, E., Danielsen, M., Larsen, K., Bendixen, C., 2010. Advances in porcine genomics and proteomics-a toolbox for developing the pig as a model organism for molecular biomedical research. Brief Funct. Genomics 9, 208-219.
    [3]
    Berardino, F. D., Alpini, D., Ambrosetti, U., Amadeo, C., Cesarani, A., 2007. Sensorineural hearing-loss in the Smith-Lemli-Opitz syndrome. Int. J. Pediatr. Otorhinolaryngol. Extra. 2, 169-172.
    [4]
    Bouchard, L., Faucher, G., Tchernof, A., Deshaies, Y., Marceau, S., Lescelleur, O., Biron, S., Bouchard, C., Perusse, L., Vohl, M. C., 2009. Association of OSBPL11 gene polymorphisms with cardiovascular disease risk factors in obesity. Obesity 17, 1466-1472.
    [5]
    Chang, I.J., Kang, C.J., Yueh, C. Y., Fang, K. H., Yeh, R. M., Tsai, Y. T., 2015. The relationship between serum lipids and sudden sensorineural hearing loss: a systematic review and meta-analysis. PLoS One 10, e0121025.
    [6]
    Chen, L., Guo, W., Ren, L., Yang, M., Zhao, Y., Guo, Z., Yi, H., Li, M., Hu, Y., Long, X., Sun B., Li J., Zhai S., Zhang T., Tian S., Meng Q., Yu N., Zhu D., Tang G., Tang Q., Ren L., Liu K., Zhang S., Che T., Yu Z., Wu N., Jing L., Zhang R., Cong T., Chen S., Zhao Y., Zhang Y., Bai X., Guo Y., Zhao L., Zhang F., Zhao H., Zhang L., Hou Z., Zhao J., Li J., Zhang L., Sun W., Zou X., Wang T., Ge L., Liu Z., Hu X., Wang J., Yang S., Li N., 2016. A de novo silencer causes elimination of MITF-M expression and profound hearing loss in pigs. BMC Biol. 14, 52.
    [7]
    Cohen, M. M. and Gorlin, R. J., 1995. Hereditary hearing loss and its syndromes. In: Gorlin, R. J., Toriello, H. V., Cohen, M. M. (Eds.), Oxford monographs on medical genetics. Oxford University Press, New York, US, pp. 9-21.
    [8]
    Dror, A. A. and Avraham, K. B., 2009. Hearing loss: Mechanisms revealed by genetics and cell biology. Annu. Rev. Genet. 43, 411-437.
    [9]
    Egilmez, O. K., Kalcioglu, M. T., 2016. Genetics of nonsyndromic congenital hearing loss. Scientifica (Cairo) 2016, 7576064.
    [10]
    Escajadillo, T., Wang, H., Li, L., Li, D., Sewer, M. B., 2016. Oxysterol-related-binding-protein related Protein-2 (ORP2) regulates cortisol biosynthesis and cholesterol homeostasis. Mol. Cell. Endocrinol. 427, 73-85.
    [11]
    Evans, M. B., Tonini, R., Shope, C. D., Oghalai, J. S., Jerger, J. F., Insull, W. Jr., Brownell, W. E., 2006. Dyslipidemia and auditory function. Otol. Neurotol. 27, 609-614.
    [12]
    Fang, B., Ren, X., Wang, Y., Li, Z., Zhao, L., Zhang, M., Li, C., Zhang, Z., Chen, L., Li, X., Liu J., Xiong Q., Zhang L., Jin Y., Liu X., Li L., Wei H., Yang H., Li R., Dai Y., 2018. Apolipoprotein E deficiency accelerates atherosclerosis development in miniature pigs. Dis. Model Mech. 11, pii: dmm036632. doi: 10.1242/dmm.036632.
    [13]
    Guo, W., Yi, H., Ren, L., Chen, L., Zhao, L., Sun, W., Yang, S. M., 2015. The morphology and electrophysiology of the cochlea of the miniature pig. Anat. Rec. (Hoboken) 298, 494-500.
    [14]
    Hai, T, Cao, C., Shang, H., Guo, W., Mu, Y., Yang, S., Zhang, Y., Zheng, Q., Zhang, T., Wang, X., Liu, Y., Kong, Q., Li, K., Wang, D., Qi, M., Hong, Q., Zhang, R., Wang, X., Jia, Q., Wang, X., Qin, G., Li, Y., Luo, A., Jin, W., Yao, J., Huang, J., Zhang, H., Li, M., Xie, X., Zheng, X., Guo, K., Wang, Q., Zhang, S., Li, L., Xie, F., Zhang, Y., Weng, X., Yin, Z., Hu, K., Cong, Y., Zheng, P., Zou, H., Xin, L., Xia, J., Ruan, J., Li, H., Zhao, W., Yuan, J., Liu, Z., Gu, W., Li, M., Wang, Y., Wang, H., Yang, S., Liu, Z., Wei, H., Zhao, J., Zhou, Q., Meng, A., 2017. A pilot study of large-scale production of mutant pigs by ENU mutagenesis. eLife 6, e26248.
    [15]
    Hai, T., Guo, W., Yao, J., Cao, C., Luo, A., Qi, M., Wang, X., Wang, X., Huang, J., Zhang, Y., Zhang, H., Wang, D., Shang, H., Hong, Q., Zhang, R., Jia, Q., Zheng, Q., Qin, G., Li, Y., Zhang, T., Jin, W., Chen, Z. Y., Wang, H., Zhou, Q., Meng, A., Wei, H., Yang, S., Zhao, J., 2017. Creation of miniature pig model of human Waardenburg syndrome type 2A by ENU mutagenesis. Hum. Genet. 136, 1463-1475.
    [16]
    Helzner, E. P., Patel, A. S., Pratt, S., Sutton-Tyrrell, K., Cauley, J. A., Talbott, E., Kenyon, E., Harris, T. B., Satterfield, S., Ding, J., Newman A. B., 2011. Hearing sensitivity in older adults: associations with cardiovascular risk factors in the health, aging and body composition study. J. Am. Geriatr. Soc. 59, 972-979.
    [17]
    Hynynen, R., Suchanek, M., Spandl, J., Back, N., Thiele, C., Olkkonen, V. M., 2009. OSBP related protein 2 (ORP2) is a sterol receptor on lipid droplets that regulates the metabolism of neutral lipids. J. Lipid. Res. 50, 1305-1315.
    [18]
    Kentala, H., Koponen, A., Kivela, A. M., Andrews, R., Li, C., Zhou, Y., Olkkonen, V. M., 2018. Analysis of ORP2-knockout hepatocytes uncovers a novel function in actin cytoskeletal regulation. FASEB J. 32, 1281-1295.
    [19]
    Kentala, H., Koponen, A., Vihinen, H., Pirhonen, J., Liebisch, G., Pataj, Z., Kivela, A., Li, S., Karhinen, L., Jaaskelainen, E., Andrews R., Merilainen L., Matysik S., Ikonen E., Zhou Y., Jokitalo E., Olkkonen V. M., 2018. OSBP-related protein-2 (ORP2): a novel Akt effector that controls cellular energy metabolism. Cell Mol. Life Sci. 75, 4041-4057.
    [20]
    King, K. A., Gordon-Salant, S., Yanjanin, N., Zalewski, C., Houser, A., Porter, F. D., Brewer, C. C., 2014. Auditory phenotype of Niemann-Pick disease, type C1. Ear Hear. 35, 110-117.
    [21]
    Korver, A., Smith, R. J., Van Camp, G., 2017. Congenital hearing loss. Nat. Rev. Dis. Primers 3, 16094.
    [22]
    Laitinen, S., Lehto, M., Lehtonen, S., Hyvarinen, K., Heino, S., Lehtonen, E., Ehnholm, C., Ikonen, E., Olkkonen. V. M., 2002. ORP2, a homolog of oxysterol binding protein, regulates cellular cholesterol metabolism. J. Lipid. Res. 43, 245-255.
    [23]
    Lovell, J. M., Harper, G. M., 2007. The morphology of the inner ear from the domestic pig (Sus scrofa). J. Microsc. 228(Pt 3), 345-357.
    [24]
    Malgrange, B., Varela-Nieto, I., de Medina, P., Paillasse, M. R., 2015. Targeting cholesterol homeostasis to fight hearing loss: a new perspective. Front. Aging Neurosci. 7, 3.
    [25]
    Petersen, M. B., 2002. Non-syndromic autosomal-dominant deafness. Clin. Genet. 62, 1-13.
    [26]
    Prabhakar, S., 2012. Translational research challenges: finding the right animal models. J. Investig. Med. 60, 1141-1146.
    [27]
    Prather, R. S., Lorson, M., Ross, J. W., Whyte, J. J., Walters, E., 2013. Genetically engineered pig models for human diseases. Annu. Rev. Anim. Biosci. 1, 203-219.
    [28]
    Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster. J., Grody, W. W., Hegde, M., Lyon, E., Spector, E. Voelkerding, K., Rehm, H. L., ACMG Laboratory Quality Assurance Committee, 2015. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17: 405-424.
    [29]
    Sewer, M. B., Li, D., 2013. Regulation of adrenocortical steroid hormone production by RhoA-diaphanous 1 signaling and the cytoskeleton. Mol. Cell Endocrinol. 371, 79-86.
    [30]
    Sheffield, A. M., Smith, R. J. H., 2018. The epidemiology of deafness. Cold Spring Harb. Perspect. Med. pii: a033258.
    [31]
    Strain, G. M., 2015. The genetics of deafness in domestic animals. Front. Vet. Sci. 2, 29.
    [32]
    Suchanek, M., Hynynen, R., Wohlfahrt, G., Lehto, M., Johansson, M., Saarinen, H., Radzikowska, A., Thiele, C., Olkkonen, V. M., 2007. The mammalian oxysterol-binding protein-related proteins (ORPs) bind 25-hydroxycholesterol in an evolutionarily conserved pocket. Biochem. J. 405, 473-480.
    [33]
    Thoenes, M., Zimmermann, U., Ebermann, I., Ptok, M., Lewis, M. A., Thiele, H., Morlot, S., Hess, M. M., Gal, A., Eisenberger, T., Bergmann, C., Nurnberg, G., Nurnberg, P., Steel, K. P., Knipper, M., Bolz, H. J., 2015. OSBPL2 encodes a protein of inner and outer hair cell stereocilia and is mutated in autosomal dominant hearing loss (DFNA67). Orphanet. J. Rare. Dis. 10, 15.
    [34]
    Viberg, A., Canlon, B., 2007. The guide to plotting a cochleogram. Hear. Res. 197: 1-10.
    [35]
    Walters E. M., Wolf, E., Whyte, J. J., Mao, J., Renner, S., Nagashima, H., Kobayashi, E., Zhao, J., Wells, K. D., Critser, J. K., Riley L. K, Prather, R. S., 2012. Completion of the swine genome will simplify the production of swine as a large animal biomedical model. BMC Med. Genomics 5, 55.
    [36]
    Xing, G., Yao, J., Wu, B., Liu, T., Wei, Q., Liu, C., Lu, Y., Chen, Z., Zheng, H., Yang, X. Cao, X., 2015. Identification of OSBPL2 as a novel candidate gene for progressive nonsyndromic hearing loss by whole-exome sequencing. Genet. Med. 17, 210-218.
    [37]
    Yan, D., Lehto, M., Rasilainen, L., Metso, J., Ehnholm, C., Yla-Herttuala, S., Jauhiainen, M., Olkkonen, V. M., 2007a. Oxysterol binding protein induces upregulation of SREBP-1c and enhances hepatic lipogenesis. Arterioscler. Thromb. Vasc. Biol. 27, 1108-1114.
    [38]
    Yan, D., Jauhiainen, M., Hildebrand, R. B., Willems van Dijk, K., Van Berkel, T. J., Ehnholm, C., Van Eck, M., Olkkonen, V. M., 2007b. Expression of human OSBP-related protein 1L in macrophages enhances atherosclerotic lesion development in LDL receptor-deficient mice. Arterioscler. Thromb. Vasc. Biol. 27, 1618-1624.
    [39]
    Yan, S., Tu, Z., Liu, Z., Fan, N., Yang, H., Yang, S., Yang, W., Zhao, Y., Ouyang, Z., Lai, C., Yang, H., Li, L., Liu, Q., Shi, H., Xu, G., Zhao, H., Wei, H., Pei, Z., Li, S., Lai, L., Li, X. J., 2018. A Huntingtin knockin pig model recapitulates features of selective neurodegeneration in Huntington's disease. Cell 173, 989-1002.e13.
    [40]
    Yao, X., Wang, X., Liu, J., Hu, X., Shi, L., Shen, X., Ying, W., Sun, X., Wang, X., Huang, P., Yang, H., 2017. CRISPR/Cas9-mediated precise targeted integration in vivo using a double cut donor with short homology arms. EBioMedicine 20, 19-26.
    [41]
    Zhou, X., Xin, J., Fan, N., Zou, Q., Huang, J., Ouyang, Z., Zhao, Y., Zhao, B., Liu, Z., Lai, S., Yi, X., Guo, L., Esteban, M. A., Zeng, Y., Yang, H., Lai, L., 2015. Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer. Cell Mol. Life Sci. 72, 1175-1184.
    [42]
    Zou, B., Mittal, R., Grati, M., Lu, Z., Shu, Y., Tao, Y., Feng, Y., Xie, D., Kong, W., Yang, S., Chen, Z. Y., Liu, X., 2015. The application of genome editing in studying hearing loss. Hear. Res. 327, 102-108.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (111) PDF downloads (1) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return