5.9
CiteScore
5.9
Impact Factor
Volume 46 Issue 7
Jul.  2019
Turn off MathJax
Article Contents

Mapping quantitative trait loci using binned genotypes

doi: 10.1016/j.jgg.2019.06.005
More Information
  • Corresponding author: E-mail address: qifazh@mail.hzau.edu.cn (Qifa Zhang); E-mail address: shizhong.xu@ucr.edu (Shizhong Xu)
  • Received Date: 2018-12-31
  • Accepted Date: 2019-06-21
  • Rev Recd Date: 2019-06-16
  • Available Online: 2019-07-23
  • Publish Date: 2019-07-20
  • Precise mapping of quantitative trait loci (QTLs) is critical for assessing genetic effects and identifying candidate genes for quantitative traits. Interval and composite interval mappings have been the methods of choice for several decades, which have provided tools for identifying genomic regions harboring causal genes for quantitative traits. Historically, the concept was developed on the basis of sparse marker maps where genotypes of loci within intervals could not be observed. Currently, genomes of many organisms have been saturated with markers due to the new sequencing technologies. Genotyping by sequencing usually generates hundreds of thousands of single nucleotide polymorphisms (SNPs), which often include the causal polymorphisms. The concept of interval no longer exists, prompting the necessity of a norm change in QTL mapping technology to make use of the high-volume genomic data. Here we developed a statistical method and a software package to map QTLs by binning markers into haplotype blocks, called bins. The new method detects associations of bins with quantitative traits. It borrows the mixed model methodology with a polygenic control from genome-wide association studies (GWAS) and can handle all kinds of experimental populations under the linear mixed model (LMM) framework. We tested the method using both simulated data and data from populations of rice. The results showed that this method has higher power than the current methods. An R package named binQTL is available from GitHub.
  • These authors contributed equally to this work.
  • loading
  • [1]
    Bernardo, R., 2013. Genomewide markers as cofactors for precision mapping of quantitative trait loci. Theor. Appl. Genet. 126, 999-1009.
    [2]
    Broman, K.W., Wu, H., Sen S., Churchill, G.A., 2003. R/qtl: QTL mapping in experimental crosses. Bioinformatics 19, 889-890.
    [3]
    Collaborative Cross Consortium, 2012. The genome architecture of the collaborative cross mouse genetic reference population. Genetics 190, 389-401.
    [4]
    Fan, C., Xing, Y., Mao, H., Lu, T., Han, B., Xu, C., Li, X., Zhang, Q., 2006. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor. Appl. Genet. 112, 1164-1171.
    [5]
    Fisher, R.A., 1918. The correlation between relatives on the supposition of Mendelian inheritance. T. Roy. Soc. Edin. 52, 399-433.
    [6]
    Hua, J., Xing, Y., Wu, W., Xu, C., Sun, X., Yu, S., Zhang, Q., 2003. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc. Natl. Acad. Sci. U. S. A. 100, 2574-2579.
    [7]
    Hua, J.P., Xing, Y.Z., Xu, C.G., Sun, X.L., Yu, S.B., Zhang, Q., 2002. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics 162, 1885-1895.
    [8]
    Huang, B.E., Verbyla, K.L., Verbyla, A.P., Raghavan, C., Singh, V.K., Gaur, P., Leung, H., Varshney, R.K., Cavanagh, C.R., 2015. MAGIC populations in crops: current status and future prospects. Theor. Appl. Genet. 128, 999-1017.
    [9]
    Huang, X., Feng, Q., Qian, Q., Zhao, Q., Wang, L., Wang, A., Guan, J., Fan, D., Weng, Q., Huang, T., Dong, G., Sang, T., Han, B., 2009. High-throughput genotyping by whole-genome resequencing. Genome Res. 19, 1068-1076.
    [10]
    Kao, C.H., Zeng, Z.B., Teasdale, R.D., 1999. Multiple interval mapping for quantitative trait loci. Genetics 152, 1203-1216.
    [11]
    Lander, E.S., Botstein, D., 1989. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121, 185-199.
    [12]
    Li, H., Ye, G., Wang, J., 2007. A modified algorithm for the improvement of composite interval mapping. Genetics 175, 361.
    [13]
    Listgarten, J., Lippert, C., Kadie, C.M., Davidson, R.I., Eskin, E., Heckerman, D., 2012. Improved linear mixed models for genome-wide association studies. Nat. Methods 9, 525.
    [14]
    Mackay, T.F.C., Stone, E.A., Ayroles, J.F., 2009. The genetics of quantitative traits: challenges and prospects. Nat. Rev. Genet. 10, 565-577.
    [15]
    Mayer, M., 2005. A comparison of regression interval mapping and multiple interval mapping for linked QTL. Heredity 94, 599.
    [16]
    Pillen, K., Zacharias, A., Leon, J., 2003. Advanced backcross QTL analysis in barley (Hordeum vulgare L.). Theor. Appl. Genet. 107, 340-352.
    [17]
    Wang, S.-B., Wen, Y.-J., Ren, W.-L., Ni, Y.-L., Zhang, J., Feng, J.-Y., Zhang, Y.-M., 2016. Mapping small-effect and linked quantitative trait loci for complex traits in backcross or DH populations via a multi-locus GWAS methodology. Sci. Rep. 6, 29951.
    [18]
    Wang, S., Basternand, J., Zeng, Z., 2012. Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm.
    [19]
    Wei, J., Xu, S., 2016. A random-model approach to QTL mapping in multiparent advanced generation intercross (MAGIC) populations. Genetics 202, 471-486.
    [20]
    Wen, Y.J., Zhang, Y.W., Zhang, J., Feng, J.Y., Dunwell, J.M., Zhang, Y.M., 2018. An efficient multi-locus mixed model framework for the detection of small and linked QTLs in F2. Brief. Bioinform. doi: 10.1093/bib/bby058.
    [21]
    Weng, J., Gu, S., Wan, X., Gao, H., Guo, T., Su, N., Lei, C., Zhang, X., Cheng, Z., Guo, X., Wang, J., Jiang, L., Zhai, H., Wan, J., 2008. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res. 18, 1199-1209.
    [22]
    Woodbury, M.A., 1949. The stability of out-input matrices. University of Chicago Press, Chicago, pp 93.
    [23]
    Xie, W., Feng, Q., Yu, H., Huang, X., Zhao, Q., Xing, Y., Yu, S., Han, B., Zhang, Q., 2010. Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing. Proc. Natl. Acad. Sci. U. S. A. 107, 10578-10583.
    [24]
    Xing, Z., Tan, F., Hua, P., Sun, L., Xu, G., Zhang, Q., 2002. Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theor. Appl. Genet. 105, 248-257.
    [25]
    Xu, S., 2013a. Genetic mapping and genomic selection using recombination breakpoint data. Genetics 195, 1103-1115.
    [26]
    Xu, S., 2013b. Mapping quantitative trait loci by controlling polygenic background effects. Genetics 195, 1209-1222.
    [27]
    Yu, H., Xie, W., Wang, J., Xing, Y., Xu, C., Li, X., Xiao, J., Zhang, Q., 2011. Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. PLoS One 6, e17595.
    [28]
    Yu, J., Holland, J.B., McMullen, M.D., Buckler, E.S., 2008. Genetic design and statistical power of nested association mapping in maize. Genetics 178, 539.
    [29]
    Yu, J., Pressoir, G., Briggs, W.H., Vroh Bi, I., Yamasaki, M., Doebley, J.F., McMullen, M.D., Gaut, B.S., Nielsen, D.M., Holland, J.B., Kresovich, S., Buckler, E.S., 2006. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 38, 203.
    [30]
    Zeng, Z.B., 1993. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc. Natl. Acad. Sci. U. S. A. 90, 10972-10976.
    [31]
    Zeng, Z.B., 1994. Precision mapping of quantitative trait loci. Genetics 136, 1457-1468.
    [32]
    Zhou, G., Chen, Y., Yao, W., Zhang, C., Xie, W., Hua, J., Xing, Y., Xiao, J., Zhang, Q., 2012. Genetic composition of yield heterosis in an elite rice hybrid. Proc. Natl. Acad. Sci. U. S. A. 109, 15847-15852.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (148) PDF downloads (3) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return