[1] |
Bernardo, R., 2013. Genomewide markers as cofactors for precision mapping of quantitative trait loci. Theor. Appl. Genet. 126, 999-1009.
|
[2] |
Broman, K.W., Wu, H., Sen S., Churchill, G.A., 2003. R/qtl: QTL mapping in experimental crosses. Bioinformatics 19, 889-890.
|
[3] |
Collaborative Cross Consortium, 2012. The genome architecture of the collaborative cross mouse genetic reference population. Genetics 190, 389-401.
|
[4] |
Fan, C., Xing, Y., Mao, H., Lu, T., Han, B., Xu, C., Li, X., Zhang, Q., 2006. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor. Appl. Genet. 112, 1164-1171.
|
[5] |
Fisher, R.A., 1918. The correlation between relatives on the supposition of Mendelian inheritance. T. Roy. Soc. Edin. 52, 399-433.
|
[6] |
Hua, J., Xing, Y., Wu, W., Xu, C., Sun, X., Yu, S., Zhang, Q., 2003. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc. Natl. Acad. Sci. U. S. A. 100, 2574-2579.
|
[7] |
Hua, J.P., Xing, Y.Z., Xu, C.G., Sun, X.L., Yu, S.B., Zhang, Q., 2002. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics 162, 1885-1895.
|
[8] |
Huang, B.E., Verbyla, K.L., Verbyla, A.P., Raghavan, C., Singh, V.K., Gaur, P., Leung, H., Varshney, R.K., Cavanagh, C.R., 2015. MAGIC populations in crops: current status and future prospects. Theor. Appl. Genet. 128, 999-1017.
|
[9] |
Huang, X., Feng, Q., Qian, Q., Zhao, Q., Wang, L., Wang, A., Guan, J., Fan, D., Weng, Q., Huang, T., Dong, G., Sang, T., Han, B., 2009. High-throughput genotyping by whole-genome resequencing. Genome Res. 19, 1068-1076.
|
[10] |
Kao, C.H., Zeng, Z.B., Teasdale, R.D., 1999. Multiple interval mapping for quantitative trait loci. Genetics 152, 1203-1216.
|
[11] |
Lander, E.S., Botstein, D., 1989. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121, 185-199.
|
[12] |
Li, H., Ye, G., Wang, J., 2007. A modified algorithm for the improvement of composite interval mapping. Genetics 175, 361.
|
[13] |
Listgarten, J., Lippert, C., Kadie, C.M., Davidson, R.I., Eskin, E., Heckerman, D., 2012. Improved linear mixed models for genome-wide association studies. Nat. Methods 9, 525.
|
[14] |
Mackay, T.F.C., Stone, E.A., Ayroles, J.F., 2009. The genetics of quantitative traits: challenges and prospects. Nat. Rev. Genet. 10, 565-577.
|
[15] |
Mayer, M., 2005. A comparison of regression interval mapping and multiple interval mapping for linked QTL. Heredity 94, 599.
|
[16] |
Pillen, K., Zacharias, A., Leon, J., 2003. Advanced backcross QTL analysis in barley (Hordeum vulgare L.). Theor. Appl. Genet. 107, 340-352.
|
[17] |
Wang, S.-B., Wen, Y.-J., Ren, W.-L., Ni, Y.-L., Zhang, J., Feng, J.-Y., Zhang, Y.-M., 2016. Mapping small-effect and linked quantitative trait loci for complex traits in backcross or DH populations via a multi-locus GWAS methodology. Sci. Rep. 6, 29951.
|
[18] |
Wang, S., Basternand, J., Zeng, Z., 2012. Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm.
|
[19] |
Wei, J., Xu, S., 2016. A random-model approach to QTL mapping in multiparent advanced generation intercross (MAGIC) populations. Genetics 202, 471-486.
|
[20] |
Wen, Y.J., Zhang, Y.W., Zhang, J., Feng, J.Y., Dunwell, J.M., Zhang, Y.M., 2018. An efficient multi-locus mixed model framework for the detection of small and linked QTLs in F2. Brief. Bioinform. doi: 10.1093/bib/bby058.
|
[21] |
Weng, J., Gu, S., Wan, X., Gao, H., Guo, T., Su, N., Lei, C., Zhang, X., Cheng, Z., Guo, X., Wang, J., Jiang, L., Zhai, H., Wan, J., 2008. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res. 18, 1199-1209.
|
[22] |
Woodbury, M.A., 1949. The stability of out-input matrices. University of Chicago Press, Chicago, pp 93.
|
[23] |
Xie, W., Feng, Q., Yu, H., Huang, X., Zhao, Q., Xing, Y., Yu, S., Han, B., Zhang, Q., 2010. Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing. Proc. Natl. Acad. Sci. U. S. A. 107, 10578-10583.
|
[24] |
Xing, Z., Tan, F., Hua, P., Sun, L., Xu, G., Zhang, Q., 2002. Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theor. Appl. Genet. 105, 248-257.
|
[25] |
Xu, S., 2013a. Genetic mapping and genomic selection using recombination breakpoint data. Genetics 195, 1103-1115.
|
[26] |
Xu, S., 2013b. Mapping quantitative trait loci by controlling polygenic background effects. Genetics 195, 1209-1222.
|
[27] |
Yu, H., Xie, W., Wang, J., Xing, Y., Xu, C., Li, X., Xiao, J., Zhang, Q., 2011. Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. PLoS One 6, e17595.
|
[28] |
Yu, J., Holland, J.B., McMullen, M.D., Buckler, E.S., 2008. Genetic design and statistical power of nested association mapping in maize. Genetics 178, 539.
|
[29] |
Yu, J., Pressoir, G., Briggs, W.H., Vroh Bi, I., Yamasaki, M., Doebley, J.F., McMullen, M.D., Gaut, B.S., Nielsen, D.M., Holland, J.B., Kresovich, S., Buckler, E.S., 2006. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 38, 203.
|
[30] |
Zeng, Z.B., 1993. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc. Natl. Acad. Sci. U. S. A. 90, 10972-10976.
|
[31] |
Zeng, Z.B., 1994. Precision mapping of quantitative trait loci. Genetics 136, 1457-1468.
|
[32] |
Zhou, G., Chen, Y., Yao, W., Zhang, C., Xie, W., Hua, J., Xing, Y., Xiao, J., Zhang, Q., 2012. Genetic composition of yield heterosis in an elite rice hybrid. Proc. Natl. Acad. Sci. U. S. A. 109, 15847-15852.
|