5.9
CiteScore
5.9
Impact Factor
Volume 46 Issue 6
Jun.  2019
Turn off MathJax
Article Contents

RSBP15 interacts with and stabilizes dRSPH3 during sperm axoneme assembly in Drosophila

doi: 10.1016/j.jgg.2019.05.001
More Information
  • Corresponding author: E-mail address: guo_xuejiang@njmu.edu.cn (Xuejiang Guo); E-mail address: huangjuan@njmu.edu.cn (Juan Huang); E-mail address: shajh@njmu.edu.cn (Jiahao Sha)
  • Received Date: 2019-03-14
  • Accepted Date: 2019-05-29
  • Rev Recd Date: 2019-05-28
  • Available Online: 2019-06-01
  • Publish Date: 2019-06-20
  • Flagellum in sperm is composed of over 200 different proteins and is essential for sperm motility. In particular, defects in the assembly of the radial spoke in the flagellum result in male infertility due to loss of sperm motility. However, mechanisms regulating radial spoke assembly remain unclear in metazoans. Here, we identified a novel Drosophila protein radial spoke binding protein 15 (RSBP15) which plays an important role in regulating radial spoke assembly. Loss of RSBP15 results in complete lack of mature sperms in seminal vesicles (SVs), asynchronous individualization complex (IC) and defective “9 + 2” structure in flagella. RSBP15 is colocalized with dRSPH3 in sperm flagella, and interacts with dRSPH3 through its DD_R_PKA superfamily domain which is important for the stabilization of dRSPH3. Moreover, loss of dRSPH3, as well as dRSPH1, dRSPH4a and dRSPH9, showed similar phenotypes to rsbp15 mutant. Together, our results suggest that RSBP15 acts in stabilizing the radial spoke protein complex to anchor and strengthen the radial spoke structures in sperm flagella.
  • loading
  • [1]
    Afzelius, B., 1959. Electron microscopy of the sperm tail; results obtained with a new fixative. J. Biophys. Biochem. Cytol. 5, 269-278.
    [2]
    Bader, M., Benjamin, S., Wapinski, O.L., Smith, D.M., Goldberg, A.L., Steller, H., 2011. A conserved F box regulatory complex controls proteasome activity in Drosophila. Cell 145, 371-382.
    [3]
    Bassett, A.R., Liu, J.L., 2014. CRISPR/Cas9 and genome editing in Drosophila. J. Genet. Genomics 41, 7-19.
    [4]
    Bastin, P., Pullen, T.J., Moreira-Leite, F.F., Gull, K., 2000. Inside and outside of the trypanosome flagellum:a multifunctional organelle. Microbes Infect. 2, 1865-1874.
    [5]
    Castleman, V.H., Romio, L., Chodhari, R., Hirst, R.A., de Castro, S.C.P., Parker, K.A., Ybot-Gonzalez, P., Emes, R.D., Wilson, S.W., Wallis, C., Johnson, C.A., Herrera, R.J., Rutman, A., Dixon, M., Shoemark, A., Bush, A., Hogg, C., Gardiner, R.M., Reish, O., Greene, N.D.E., O’Callaghan, C., Purton, S., Chung, E.M.K., Mitchison, H.M., 2009. Mutations in radial spoke head protein genes RSPH9 and RSPH4A cause primary ciliary dyskinesia with central-microtubular-pair abnormalities. Am. J. Hum. Genet. 84, 197-209.
    [6]
    Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., Zhang, F., 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823.
    [7]
    Coutton, C., Vargas, A.S., Amiri-Yekta, A., Kherraf, Z.E., Ben Mustapha, S.F., Le Tanno, P., Wambergue-Legrand, C., Karaouzene, T., Martinez, G., Crouzy, S., Daneshipour, A., Hosseini, S.H., Mitchell, V., Halouani, L., Marrakchi, O., Makni, M., Latrous, H., Kharouf, M., Deleuze, J.F., Boland, A., Hennebicq, S., Satre, V., Jouk, P.S., Thierry-Mieg, N., Conne, B., Dacheux, D., Landrein, N., Schmitt, A., Stouvenel, L., Lores, P., El Khouri, E., Bottari, S.P., Faure, J., Wolf, J.P., Pernet-Gallay, K., Escoffier, J., Gourabi, H., Robinson, D.R., Nef, S., Dulioust, E., Zouari, R., Bonhivers, M., Toure, A., Arnoult, C., Ray, P.F., 2018. Mutations in CFAP43 and CFAP44 cause male infertility and flagellum defects in Trypanosoma and human. Nat. Commun. 9, 686.
    [8]
    Cox J. and Mann, M., MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification, Nat. Biotechnol. 26, 2008, 1367-1372
    [9]
    Diener, D.R., Ang, L.H., Rosenbaum, J.L., 1993. Assembly of flagellar radial spoke proteins in Chlamydomonas: identification of the axoneme binding domain of radial spoke protein 3. J. Cell Biol. 123, 183-190.
    [10]
    Fabian, L., Brill, J.A., 2012. Drosophila spermiogenesis: big things come from little packages. Spermatogenesis 2, 197-212.
    [11]
    Frommer, A., Hjeij, R., Loges, N.T., Edelbusch, C., Jahnke, C., Raidt, J., Werner, C., Wallmeier, J., Grosse-Onnebrink, J., Olbrich, H., Cindric, S., Jaspers, M., Boon, M., Memari, Y., Durbin, R., Kolb-Kokocinski, A., Sauer, S., Marthin, J.K., Nielsen, K.G., Amirav, I., Elias, N., Kerem, E., Shoseyov, D., Haeffner, K., Omran, H., 2015. Immunofluorescence analysis and diagnosis of primary ciliary dyskinesia with radial spoke defects. Am. J. Respir. Cell Mol. Biol. 53, 563-573.
    [12]
    Ghosh-Roy, A., Kulkarni, M., Kumar, V., Shirolikar, S., Ray, K., 2004. Cytoplasmic dynein-dynactin complex is required for spermatid growth but not axoneme assembly in Drosophila. Mol. Biol. Cell 15, 2470-2483.
    [13]
    Goodenough, U.W., Heuser, J.E., 1985. Substructure of inner dynein arms, radial spokes, and the central pair/projection complex of cilia and flagella. J. Cell Biol. 100, 2008-18.
    [14]
    Gottardo, M., Callaini, G., Riparbelli, M.G., 2013. The cilium-like region of the Drosophila spermatocyte: an emerging flagellum? J. Cell Sci. 126, 5441-5452.
    [15]
    Guo, X., Fillmore, T.L., Gao, Y., Tang, K., 2016. Capillary electrophoresis-nanoelectrospray ionization-selected reaction monitoring mass spectrometry via a true sheathless metal-coated emitter interface for robust and high-sensitivity sample quantification. Anal. Chem. 88, 4418-4425.
    [16]
    Han, X., Xie, H., Wang, Y., Zhao, C., 2018. Radial spoke proteins regulate otolith formation during early zebrafish development. FASEB J. 32, 3984-3992.
    [17]
    Hu, X., Yan, R., Song, L., Lu, X., Chen, S., Zhao, S., 2014. Subcellular localization and function of mouse radial spoke protein 3 in mammalian cells and central nervous system. J. Mol. Histol. 45, 723-732.
    [18]
    Huang, J., Zhou, W., Hong, Y., Watson, A.M., Dong, W., 2009. Directed, efficient, and versatile modifications of the Drosophila genome by genomic engineering. Proc. Natl. Acad. Sci. USA 106, 8284-8289.
    [19]
    Inaba, K., 2007. Molecular basis of sperm flagellar axonemes: structural and evolutionary aspects. Ann. N Y Acad. Sci. 1101, 506-526.
    [20]
    Inaba, K., 2011. Sperm flagella: comparative and phylogenetic perspectives of protein components. Mol. Hum. Reprod. 17, 524-538.
    [21]
    Jeanson, L., Copin, B., Papon, J.F., Dastot-Le Moal, F., Duquesnoy, P., Montantin, G., Cadranel, J., Corvol, H., Coste, A., Desir, J., Souayah, A., Kott, E., Collot, N., Tissier, S., Louis, B., Tamalet, A., de Blic, J., Clement, A., Escudier, E., Amselem, S., Legendre, M., 2015. RSPH3 mutations cause primary ciliary dyskinesia with central-complex defects and a near absence of radial spokes. Am. J. Hum. Genet. 97, 153-162.
    [22]
    Lee, J.Y., Dada, R., Sabanegh, E., Carpi, A., Agarwal, A., 2011. Role of genetics in azoospermia. Urology 77, 598-601.
    [23]
    Lin, J., Heuser, T., Carbajal-Gonzalez, B.I., Song, K., Nicastro, D., 2012. The structural heterogeneity of radial spokes in cilia and flagella is conserved. Cytoskelet. 69, 88-100.
    [24]
    Lin, J., Yin, W., Smith, M.C., Song, K., Leigh, M.W., Zariwala, M.A., Knowles, M.R., Ostrowski, L.E., Nicastro, D., 2014. Cryo-electron tomography reveals ciliary defects underlying human RSPH1 primary ciliary dyskinesia. Nat. Commun. 5, 5727.
    [25]
    Mali, P., Yang, L., Esvelt, K.M., Aach, J., Guell, M., DiCarlo, J.E., Norville, J.E., Church, G.M., 2013. RNA-guided human genome engineering via Cas9. Science 339, 823-826.
    [26]
    Marchler-Bauer, A., Bo, Y., Han, L., He, J., Lanczycki, C.J., Lu, S., Chitsaz, F., Derbyshire, M.K., Geer, R.C., Gonzales, N.R., Gwadz, M., Hurwitz, D.I., Lu, F., Marchler, G.H., Song, J.S., Thanki, N., Wang, Z., Yamashita, R.A., Zhang, D., Zheng, C., Geer, L.Y., Bryant, S.H., 2017. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 45, D200-D203.
    [27]
    Nakajima, Y.I., Kuranaga, E., 2017. Caspase-dependent non-apoptotic processes in development. Cell Death Differ. 24, 1422-1430.
    [28]
    Onoufriadis, A., Shoemark, A., Schmidts, M., Patel, M., Jimenez, G., Liu, H., Thomas, B., Dixon, M., Hirst, R.A., Rutman, A., Burgoyne, T., Williams, C., Scully, J., Bolard, F., Lafitte, J.J., Beales, P.L., Hogg, C., Yang, P., Chung, E.M., Emes, R.D., O’Callaghan, C., Uk10K, Bouvagnet, P., Mitchison, H.M., 2014. Targeted NGS gene panel identifies mutations in RSPH1 causing primary ciliary dyskinesia and a common mechanism for ciliary central pair agenesis due to radial spoke defects. Hum. Mol. Genet. 23, 3362-3374.
    [29]
    Pigino, G., Ishikawa, T., 2012. Axonemal radial spokes: 3D structure, function and assembly. Bioarchitecture 2, 50-58.
    [30]
    Ren, X., Sun, J., Housden, B.E., Hu, Y., Roesel, C., Lin, S., Liu, L.P., Yang, Z., Mao, D., Sun, L., Wu, Q., Ji, J.Y., Xi, J., Mohr, S.E., Xu, J., Perrimon, N., Ni, J.Q., 2013. Optimized gene editing technology for Drosophila melanogaster using germ line-specific Cas9. Proc. Natl. Acad. Sci. USA 110, 19012-19017.
    [31]
    Sale, W.S., Satir, P., 1976. Splayed Tetrahymena cilia. A system for analyzing sliding and axonemal spoke arrangements. J. Cell Biol. 71, 589-605.
    [32]
    Sartain, C. V, Wolfner, M.F., 2012. The spermatid individualization complex of Drosophila melanogaster. Mol. Reprod. Dev. 79, 367.
    [33]
    Soulavie, F., Piepenbrock, D., Thomas, J., Vieillard, J., Duteyrat, J.L., Cortier, E., Laurencon, A., Gopfert, M.C., Durand, B., 2014. Hemingway is required for sperm flagella assembly and ciliary motility in Drosophila. Mol. Biol. Cell 25, 1276-1286.
    [34]
    Tokuyasu, K.T., Peacock, W.J., Hardy, R.W., 1972. Dynamics of spermiogenesis in Drosophila melanogaster. I. Individualization process. Z. Zellforsch Mikrosk Anat. 124, 479-506.
    [35]
    Tokuyasu, K.T., 1975. Dynamics of spermiogenesis in Drosophila melanogaster. V. Head-tail alignment. J. Ultrastruct. Res. 50, 117-129.
    [36]
    Vieillard, J., Paschaki, M., Duteyrat, J.L., Augiere, C., Cortier, E., Lapart, J.A., Thomas, J., Durand, B., 2016. Transition zone assembly and its contribution to axoneme formation in Drosophila male germ cells. J. Cell Biol. 214, 875-889.
    [37]
    Warner, F.D., 1970. New observations on flagellar fine structure. The relationship between matrix structure and the microtubule component of the axoneme. J. Cell Biol. 47, 159-182. https://doi.org/10.1083/jcb.47.1.159
    [38]
    Warner, F.D., Satir, P., 1974. The structural basis of ciliary bend formation. Radial spoke positional changes accompanying microtubule sliding. J. Cell Biol. 63, 35-63.
    [39]
    White-Cooper, H., 2009. Studying how flies make sperm--investigating gene function in Drosophila testes. Mol. Cell Endocrinol. 306, 66-74.
    [40]
    Wirschell, M., Zhao, F., Yang, C., Yang, P., Diener, D., Gaillard, A., Rosenbaum, J.L., Sale, W.S., 2008. Building a radial spoke: flagellar radial spoke protein 3 (RSP3) is a dimer. Cell Motil. Cytoskelet. 65, 238-248.
    [41]
    Xu, S., Tyagi, S., Schedl, P., 2014. Spermatid cyst polarization in Drosophila depends upon apkc and the CPEB family translational regulator orb2. PLoS Genet. 10, e1004380.
    [42]
    Yang, P., Diener, D.R., Rosenbaum, J.L., Sale, W.S., 2001. Localization of calmodulin and dynein light chain LC8 in flagellar radial spokes. J. Cell Biol. 153, 1315-1326.
    [43]
    Yang, P., Diener, D.R., Yang, C., Kohno, T., Pazour, G.J., Dienes, J.M., Agrin, N.S., King, S.M., Sale, W.S., Kamiya, R., Rosenbaum, J.L., Witman, G.B., 2006. Radial spoke proteins of Chlamydomonas flagella. J. Cell Sci. 119, 1165-1174.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (88) PDF downloads (2) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return