[1] |
Ahne, F., Jha, B., Eckardt-Schupp, F., 1997. The RAD5 gene product is involved in the avoidance of non-homologous end-joining of DNA double strand breaks in the yeast Saccharomyces cerevisiae. Nucleic Acids Res. 25, 743-749.
|
[2] |
Amin, N.S., Holm, C., 1996. In vivo analysis reveals that the interdomain region of the yeast proliferating cell nuclear antigen is important for DNA replication and DNA repair. Genetics 144, 479-493.
|
[3] |
Andreassen, P.R., Ho, G.P.H., D’Andrea, A.D., 2006. DNA damage responses and their many interactions with the replication fork. Carcinogenesis 27, 883-892.
|
[4] |
Ayyagari, R., Impellizzeri, K.J., Yoder, B.L., Gary, S.L., Burgers, P.M., 1995. A mutational analysis of the yeast proliferating cell nuclear antigen indicates distinct roles in DNA replication and DNA repair. Mol. Cell. Biol. 15, 4420-4429.
|
[5] |
Ball, L.G., Xu, X., Blackwell, S., Hanna, M.D., Lambrecht, A.D., Xiao, W., 2014. The Rad5 helicase activity is dispensable for error-free DNA post-replication repair. DNA Repair 16, 74-83.
|
[6] |
Blastyak, A., Pinter, L., Unk, I., Prakash, L., Prakash, S., Haracska, L., 2007. Yeast Rad5 Protein Required for Postreplication Repair Has a DNA Helicase Activity Specific for Replication Fork Regression. Mol. Cell 28, 167-175.
|
[7] |
Boiteux, S., Jinks-Robertson, S., 2013. DNA repair mechanisms and the bypass of DNA damage in Saccharomyces cerevisiae. Genetics 193, 1025-1064.
|
[8] |
Bonner, W.M., Redon, C.E., Dickey, J.S., Nakamura, A.J., Sedelnikova, O.A., Solier, S., Pommier, Y., 2008. γH2AX and cancer. Nat. Rev. Cancer 8, 957-967.
|
[9] |
Branzei, D., Szakal, B., 2016. DNA damage tolerance by recombination: Molecular pathways and DNA structures. DNA Repair 44, 68-75.
|
[10] |
Chang, D.J., Cimprich, K.A., 2009. DNA damage tolerance: when it’s OK to make mistakes. Nat. Chem. Biol. 5, 82-90.
|
[11] |
Chen, C., Merrill, B.J., Lau, P.J., Holm, C., Kolodner, R.D., 1999. Saccharomyces cerevisiae pol30 (proliferating cell nuclear antigen) mutations impair replication fidelity and mismatch repair. Mol. Cell. Biol. 19, 7801-7815.
|
[12] |
Chen, S., Davies, A.A., Sagan, D., Ulrich, H.D., 2005. The RING finger ATPase Rad5p of Saccharomyces cerevisiae contributes to DNA double-strand break repair in a ubiquitin-independent manner. Nucleic Acids Res. 33, 5878-5886.
|
[13] |
Choe, K.N., Moldovan, G.-L., 2017. Forging Ahead through Darkness: PCNA, Still the Principal Conductor at the Replication Fork. Mol. Cell 65, 380-392.
|
[14] |
Choi, K., Batke, S., Szakal, B., Lowther, J., Hao, F., Sarangi, P., Branzei, D., Ulrich, H.D., Zhao, X., 2015. Concerted and differential actions of two enzymatic domains underlie Rad5 contributions to DNA damage tolerance. Nucleic Acids Res. 43, 2666-2677.
|
[15] |
Dai, J., Hyland, E.M., Yuan, D.S., Huang, H., Bader, J.S., Boeke, J.D., 2008. Probing Nucleosome Function: A Highly Versatile Library of Synthetic Histone H3 and H4 Mutants. Cell 134, 1066-1078.
|
[16] |
Dieckman, L.M., Freudenthal, B.D., Washington, M.T., 2012. PCNA Structure and Function: Insights from Structures of PCNA Complexes and Post-translationally Modified PCNA. Subcell Biochem. 62, 281-299.
|
[17] |
Dieckman, L.M., Washington, M.T., 2013. PCNA trimer instability inhibits translesion synthesis by DNA polymerase η and by DNA polymerase δ. DNA Repair 12, 367-376.
|
[18] |
Eissenberg, J.C., Ayyagari, R., Gomes, X.V., Burgers, P.M., 1997. Mutations in yeast proliferating cell nuclear antigen define distinct sites for interaction with DNA polymerase delta and DNA polymerase epsilon. Mol. Cell. Biol. 17, 6367-6378.
|
[19] |
Fan, L., Xiao, W., 2016. The Pol30-K196 residue plays a critical role in budding yeast DNA postreplication repair through interaction with Rad18. DNA Repair 47, 42-48.
|
[20] |
Freudenthal, B.D., Gakhar, L., Ramaswamy, S., Washington, M.T., 2010. Structure of monoubiquitinated PCNA and implications for translesion synthesis and DNA polymerase exchange. Nat. Struct. Mol. Biol. 17, 479-484.
|
[21] |
Fukuda, K., Morioka, H., Imajou, S., Ikeda, S., Ohtsuka, E., Tsurimoto, T., 1995. Structure-function relationship of the eukaryotic DNA replication factor, proliferating cell nuclear antigen. J. Biol. Chem. 270, 22527-22534.
|
[22] |
Gangavarapu, V., Haracska, L., Unk, I., Johnson, R.E., Prakash, S., Prakash, L., 2006. Mms2-Ubc13-dependent and -independent roles of Rad5 ubiquitin ligase in postreplication repair and translesion DNA synthesis in Saccharomyces cerevisiae. Mol. Cell. Biol. 26, 7783-7790.
|
[23] |
Giannattasio, M., Zwicky, K., Follonier, C., Foiani, M., Lopes, M., Branzei, D., 2014. Visualization of recombination-mediated damage bypass by template switching. Nat. Struct. Mol. Biol. 21, 884-892.
|
[24] |
Goellner, E.M., Smith, C.E., Campbell, C.S., Hombauer, H., Desai, A., Putnam, C.D., Kolodner, R.D., 2014. PCNA and Msh2-Msh6 Activate an Mlh1-Pms1 Endonuclease Pathway Required for Exo1-Independent Mismatch Repair. Mol. Cell 55, 291-304.
|
[25] |
Hishiki, A., Shimizu, T., Serizawa, A., Ohmori, H., Sato, M., Hashimoto, H., 2008. Crystallographic study of G178S mutant of human proliferating cell nuclear antigen. Acta Crystallograph. Sect. F Struct. Biol. Cryst. Commun. 64, 819-821.
|
[26] |
Hoege, C., Pfander, B., Moldovan, G.-L., Pyrowolakis, G., Jentsch, S., 2002. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419, 135-141.
|
[27] |
Hoeijmakers, J.H.J., 2009. DNA damage, aging, and cancer. N. Engl. J. Med. 361, 1475-1485.
|
[28] |
Jiang, S., Liu, Y., Wang, A., Qin, Y., Luo, M., Wu, Q., Boeke, J.D., Dai, J., 2017a. Construction of Comprehensive Dosage-Matching Core Histone Mutant Libraries for Saccharomyces cerevisiae. Genetics.
|
[29] |
Jiang, S., Liu, Y., Xu, C., Wang, Y., Gong, J., Shen, Y., Wu, Q., Boeke, J.D., Dai, J., 2017b. Dissecting Nucleosome Function with a Comprehensive Histone H2A and H2B Mutant Library. G3 Bethesda Md.
|
[30] |
Karras, G.I., Fumasoni, M., Sienski, G., Vanoli, F., Branzei, D., Jentsch, S., 2013. Noncanonical role of the 9-1-1 clamp in the error-free DNA damage tolerance pathway. Mol. Cell 49, 536-546.
|
[31] |
Karras, G.I., Jentsch, S., 2010. The RAD6 DNA Damage Tolerance Pathway Operates Uncoupled from the Replication Fork and Is Functional Beyond S Phase. Cell 141, 255-267.
|
[32] |
Kondratick, C.M., Boehm, E.M., Dieckman, L.M., Powers, K.T., Sanchez, J.C., Mueting, S.R., Washington, M.T., 2016. Identification of New Mutations at the PCNA Subunit Interface that Block Translesion Synthesis. PLoS One 11, e0157023.
|
[33] |
Kubota, T., Nishimura, K., Kanemaki, M.T., Donaldson, A.D., 2013. The Elg1 Replication Factor C-like Complex Functions in PCNA Unloading during DNA Replication. Mol. Cell 50, 273-280.
|
[34] |
Kurth, I., O’Donnell, M., 2013. New insights into replisome fluidity during chromosome replication. Trends Biochem. Sci. 38, 195-203.
|
[35] |
Lambert, S., Froget, B., Carr, A., 2007. Arrested replication fork processing: Interplay between checkpoints and recombination. DNA Repair 6, 1042-1061.
|
[36] |
Lau, W.C.Y., Li, Y., Zhang, Q., Huen, M.S.Y., 2015. Molecular architecture of the Ub-PCNA/Pol η complex bound to DNA. Sci. Rep. 5, 15759.
|
[37] |
Mailand, N., Gibbs-Seymour, I., Bekker-Jensen, S., 2013. Regulation of PCNA-protein interactions for genome stability. Nat. Rev. Mol. Cell Biol. 14, 269-282.
|
[38] |
McNally, R., Bowman, G.D., Goedken, E.R., O’Donnell, M., Kuriyan, J., 2010. Analysis of the role of PCNA-DNA contacts during clamp loading. BMC Struct. Biol. 10, 3.
|
[39] |
Miller, A., Chen, J., Takasuka, T.E., Jacobi, J.L., Kaufman, P.D., Irudayaraj, J.M.K., Kirchmaier, A.L., 2010. Proliferating Cell Nuclear Antigen (PCNA) Is Required for Cell Cycle-regulated Silent Chromatin on Replicated and Nonreplicated Genes. J. Biol. Chem. 285, 35142-35154.
|
[40] |
Minca, E.C., Kowalski, D., 2010. Multiple Rad5 activities mediate sister chromatid recombination to bypass DNA damage at stalled replication forks. Mol. Cell 38, 649-661.
|
[41] |
Moldovan, G.-L., Pfander, B., Jentsch, S., 2007. PCNA, the Maestro of the Replication Fork. Cell 129, 665-679.
|
[42] |
Onge, R.P.S., Mani, R., Oh, J., Proctor, M., Fung, E., Davis, R.W., Nislow, C., Roth, F.P., Giaever, G., 2007. Systematic pathway analysis using high-resolution fitness profiling of combinatorial gene deletions. Nat. Genet. 39, 199-206.
|
[43] |
Pages, V., Bresson, A., Acharya, N., Prakash, S., Fuchs, R.P., Prakash, L., 2008. Requirement of Rad5 for DNA polymerase zeta-dependent translesion synthesis in Saccharomyces cerevisiae. Genetics 180, 73-82.
|
[44] |
Papouli, E., Chen, S., Davies, A.A., Huttner, D., Krejci, L., Sung, P., Ulrich, H.D., 2005. Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol. Cell 19, 123-133.
|
[45] |
Park, J.M., Yang, S.W., Yu, K.R., Ka, S.H., Lee, S.W., Seol, J.H., Jeon, Y.J., Chung, C.H., 2014. Modification of PCNA by ISG15 Plays a Crucial Role in Termination of Error-Prone Translesion DNA Synthesis. Mol. Cell 54, 626-638.
|
[46] |
Pfander, B., Moldovan, G.-L., Sacher, M., Hoege, C., Jentsch, S., 2005. SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436, 428-433.
|
[47] |
Pommier, Y., Redon, C., Rao, V.A., Seiler, J.A., Sordet, O., Takemura, H., Antony, S., Meng, L., Liao, Z., Kohlhagen, G., Zhang, H., Kohn, K.W., 2003. Repair of and checkpoint response to topoisomerase I-mediated DNA damage. Mutat. Res. 532, 173-203.
|
[48] |
Rozenzhak, S., Mejia-Ramirez, E., Williams, J.S., Schaffer, L., Hammond, J.A., Head, S.R., Russell, P., 2010. Rad3ATR Decorates Critical Chromosomal Domains with γH2A to Protect Genome Integrity during S-Phase in Fission Yeast. PLoS Genet. 6, e1001032.
|
[49] |
Stirling, P.C., Bloom, M.S., Solanki-Patil, T., Smith, S., Sipahimalani, P., Li, Z., Kofoed, M., Ben-Aroya, S., Myung, K., Hieter, P., 2011. The Complete Spectrum of Yeast Chromosome Instability Genes Identifies Candidate CIN Cancer Genes and Functional Roles for ASTRA Complex Components. PLoS Genet. 7, e1002057.
|
[50] |
Stoimenov, I., Helleday, T., 2009. PCNA on the crossroad of cancer. Biochem. Soc. Trans. 37, 605-613.
|
[51] |
Streich Jr, F.C., Lima, C.D., 2016. Capturing a substrate in an activated RING E3/E2-SUMO complex. Nature 536, 304-308.
|
[52] |
Ulrich, H.D., Jentsch, S., 2000. Two RING finger proteins mediate cooperation between ubiquitin-conjugating enzymes in DNA repair. EMBO J. 19.
|
[53] |
Vanoli, F., Fumasoni, M., Szakal, B., Maloisel, L., Branzei, D., 2010. Replication and recombination factors contributing to recombination-dependent bypass of DNA lesions by template switch. PLoS Genet. 6, e1001205.
|
[54] |
Vijayakumar, S., Chapados, B.R., Schmidt, K.H., Kolodner, R.D., Tainer, J.A., Tomkinson, A.E., 2007. The C-terminal domain of yeast PCNA is required for physical and functional interactions with Cdc9 DNA ligase. Nucleic Acids Res. 35, 1624-1637.
|
[55] |
Winzeler, E.A., 1999. Functional Characterization of the Saccharomyces cerevisiae Genome by Gene Deletion and Parallel Analysis. Science 285, 901-906.
|
[56] |
Xu, X., Lin, A., Zhou, C., Blackwell, S.R., Zhang, Y., Wang, Z., Feng, Q., Guan, R., Hanna, M.D., Chen, Z., Xiao, W., 2016. Involvement of budding yeast Rad5 in translesion DNA synthesis through physical interaction with Rev1. Nucleic Acids Res. gkw183.
|
[57] |
Yuen, K.W.Y., Warren, C.D., Chen, O., Kwok, T., Hieter, P., Spencer, F.A., 2007. Systematic genome instability screens in yeast and their potential relevance to cancer. Proc. Natl. Acad. Sci. 104, 3925-3930.
|
[58] |
Zamir, L., Zaretsky, M., Fridman, Y., Ner-Gaon, H., Rubin, E., Aharoni, A., 2012. Tight coevolution of proliferating cell nuclear antigen (PCNA)-partner interaction networks in fungi leads to interspecies network incompatibility. Proc. Natl. Acad. Sci. 109, E406-E414.
|
[59] |
Zhang, Z., Shibahara, K., Stillman, B., 2000. PCNA connects DNA replication to epigenetic inheritance in yeast. Nature 408, 221-225.
|