[1] |
Acunzo, J., Katsogiannou, M., Rocchi, P. Small heat shock proteins HSP27 (HspB1), alphaB-crystallin (HspB5) and HSP22 (HspB8) as regulators of cell death Int. J. Biochem. Cell Biol., 44 (2012),pp. 1622-1631
|
[2] |
Aiken, C.T., Kaake, R.M., Wang, X. et al. Oxidative stress-mediated regulation of proteasome complexes Mol. Cell. Proteomics, 10 (2011)
|
[3] |
Albrecht, S.C., Barata, A.G., Grosshans, J. et al. Cell Metabol., 14 (2011),pp. 819-829
|
[4] |
Amm, I., Sommer, T., Wolf, D.H. Protein quality control and elimination of protein waste: the role of the ubiquitin-proteasome system Biochim. Biophys. Acta, 1843 (2014),pp. 182-196
|
[5] |
Andreu, A.L., Arbos, M.A., Perez-Martos, A. et al. Reduced mitochondrial DNA transcription in senescent rat heart Biochem. Biophys. Res. Commun., 252 (1998),pp. 577-581
|
[6] |
Ashrafi, G., Schwarz, T.L. The pathways of mitophagy for quality control and clearance of mitochondria Cell Death Differ., 20 (2013),pp. 31-42
|
[7] |
Augustin, H., McGourty, K., Allen, M.J. et al. Reduced insulin signaling maintains electrical transmission in a neural circuit in aging flies PLoS Biol., 15 (2017)
|
[8] |
Azpurua, J., Mahoney, R.E., Eaton, B.A. Aging Cell, 17 (2018)
|
[9] |
Bahadorani, S., Hur, J.H., , Vu, K. et al. Aging Cell, 9 (2010),pp. 100-103
|
[10] |
Bai, H., Kang, P., Hernandez, A.M. et al. PLoS Genet., 9 (2013)
|
[11] |
Bartlett, B.J., Isakson, P., Lewerenz, J. et al. p62, Ref(2)P and ubiquitinated proteins are conserved markers of neuronal aging, aggregate formation and progressive autophagic defects Autophagy, 7 (2011),pp. 572-583
|
[12] |
Bayne, A.C., Mockett, R.J., Orr, W.C. et al. Biochem. J., 391 (2005),pp. 277-284
|
[13] |
Benzi, G., Curti, D., Pastoris, O. et al. Sequential damage in mitochondrial complexes by peroxidative stress Neurochem. Res., 16 (1991),pp. 1295-1302
|
[14] |
Berlett, B.S., Stadtman, E.R. Protein oxidation in aging, disease, and oxidative stress J. Biol. Chem., 272 (1997),pp. 20313-20316
|
[15] |
Blice-Baum, A.C., Zambon, A.C., Kaushik, G. et al. Aging Cell, 16 (2017),pp. 93-103
|
[16] |
Bozler, J., Nguyen, H.Q., Rogers, G.C. et al. G3, 5 (2015),pp. 341-352
|
[17] |
Brandt, A., Krohne, G., Großhans, J. Aging Cell, 7 (2008),pp. 541-551
|
[18] |
Brandt, T., Mourier, A., Tain, L.S. et al. eLife, 6 (2017)
|
[19] |
Brenner, R.R. Effect of unsaturated acids on membrane structure and enzyme kinetics Prog. Lipid Res., 23 (1984),pp. 69-96
|
[20] |
Brunk, U.T., Terman, A. The mitochondrial-lysosomal axis theory of aging: accumulation of damaged mitochondria as a result of imperfect autophagocytosis FEBS, 269 (2002),pp. 1996-2002
|
[21] |
Burkauskienė, A., Mackiewicz, Z., Virtanen, I. et al. Age-related changes in myocardial nerve and collagen networks of the auricle of the right atrium Acta Cardiol., 61 (2006),pp. 513-518
|
[22] |
Cannino, G., Di Liegro, C.M., Rinaldi, A.M. Nuclear-mitochondrial interaction Mitochondrion, 7 (2007),pp. 359-366
|
[23] |
Cannon, L., Zambon, A.C., Cammarato, A. et al. Aging Cell, 16 (2017),pp. 82-92
|
[24] |
Cao, X., Wang, H., Wang, Z. et al. Aging Cell, 16 (2017),pp. 1180-1190
|
[25] |
Carmona-Gutierrez, D., Hughes, A.L., Madeo, F. et al. The crucial impact of lysosomes in aging and longevity Ageing Res. Rev., 32 (2016),pp. 2-12
|
[26] |
Carrard, G., Bulteau, A.L., Petropoulos, I. et al. Impairment of proteasome structure and function in aging Int. J. Biochem. Cell Biol., 34 (2002),pp. 1461-1474
|
[27] |
Chang, J.T., Kumsta, C., Hellman, A.B. et al. eLife, 6 (2017)
|
[28] |
Chang, K., Kang, P., Liu, Y. et al. Activin signaling regulates autophagy and cardiac aging through mTORC2 bioRxiv (2017)
|
[29] |
Chen, H., Zheng, X., Xiao, D. et al. Aging Cell, 15 (2016),pp. 542-552
|
[30] |
Chen, H., Zheng, X., Zheng, Y. Age-associated loss of lamin-B leads to systemic inflammation and gut hyperplasia Cell, 159 (2014),pp. 829-843
|
[31] |
Cho, J., Hur, J.H., Walker, D.W. Exp. Gerontol., 46 (2011),pp. 331-334
|
[32] |
Chondrogianni, N., Georgila, K., Kourtis, N. et al. FASEB J., 29 (2015),pp. 611-622
|
[33] |
Chondrogianni, N., Gonos, E.S. Proteasome dysfunction in mammalian aging: steps and factors involved Exp. Gerontol., 40 (2005),pp. 931-938
|
[34] |
Cocheme, H.M., Logan, A., Prime, T.A. et al. Nat. Protoc., 7 (2012),pp. 946-958
|
[35] |
Cocheme, H.M., Quin, C., McQuaker, S.J. et al. Cell Metabol., 13 (2011),pp. 340-350
|
[36] |
Copeland, J.M., Cho, J., , Hur, J.H. et al. Curr. Biol., 19 (2009),pp. 1591-1598
|
[37] |
Cornelissen, T., Vilain, S., Vints, K. et al. eLife, 7 (2018)
|
[38] |
Cristina, D., Cary, M., Lunceford, A. et al. PLoS Genet., 5 (2009)
|
[39] |
Dabbaghizadeh, A., Morrow, G., Amer, Y.O. et al. PLoS One, 13 (2018)
|
[40] |
Dakik, P., Titorenko, V.I. Communications between mitochondria, the nucleus, vacuoles, peroxisomes, the endoplasmic reticulum, the plasma membrane, lipid droplets, and the cytosol during yeast chronological aging Front. Genet., 7 (2016),p. 177
|
[41] |
Das, N., Levine, R.L., Orr, W.C. et al. Biochem. J., 360 (2001),pp. 209-216
|
[42] |
Dasuri, K., Zhang, L., Ebenezer, P. et al. Aging and dietary restriction alter proteasome biogenesis and composition in the brain and liver Mech. Ageing Dev., 130 (2009),pp. 777-783
|
[43] |
Davies, K.M., Anselmi, C., Wittig, I. et al. Structure of the yeast F1Fo-ATP synthase dimer and its role in shaping the mitochondrial cristae Proc. Natl. Acad. Sci. U. S. A., 109 (2012),pp. 13602-13607
|
[44] |
Davies, S.M., Poljak, A., Duncan, M.W. et al. Measurements of protein carbonyls, ortho- and meta-tyrosine and oxidative phosphorylation complex activity in mitochondria from young and old rats Free Radic. Biol. Med., 31 (2001),pp. 181-190
|
[45] |
de Leeuw, R., Gruenbaum, Y., Medalia, O. Nuclear lamins: thin filaments with major functions Trends Cell Biol., 28 (2018),pp. 34-45
|
[46] |
Dean, R.T., Fu, S., Stocker, R. et al. Biochemistry and pathology of radical-mediated protein oxidation Biochem. J., 324 (1997),pp. 1-18
|
[47] |
Demontis, F., Patel, V.K., Swindell, W.R. et al. Intertissue control of the nucleolus via a myokine-dependent longevity pathway Cell Rep., 7 (2014),pp. 1481-1494
|
[48] |
Demontis, F., Perrimon, N. Cell, 143 (2010),pp. 813-825
|
[49] |
Deter, R.L., Baudhuin, P., De Duve, C. Participation of lysosomes in cellular autophagy induced in rat liver by glucagon J. Cell Biol., 35 (1967),pp. C11-C16
|
[50] |
DeVault, L., Li, T., Izabel, S. et al. Genes Dev., 32 (2018),pp. 402-414
|
[51] |
Diaz, M., Fabelo, N., Ferrer, I. et al. “Lipid raft aging” in the human frontal cortex during nonpathological aging: gender influences and potential implications in Alzheimer's disease Neurobiol. Aging, 67 (2018),pp. 42-52
|
[52] |
Dillin, A., Hsu, A.L., Arantes-Oliveira, N. et al. Rates of behavior and aging specified by mitochondrial function during development Science, 298 (2002),pp. 2398-2401
|
[53] |
Dou, Z., Xu, C., Donahue, G. et al. Autophagy mediates degradation of nuclear lamina Nature, 527 (2015),pp. 105-109
|
[54] |
Drechsler, M., Schmidt, A.C., Meyer, H. et al. The conserved ADAMTS-like protein lonely heart mediates matrix formation and cardiac tissue integrity PLoS Genet., 9 (2013)
|
[55] |
Ferguson, M., Mockett, R.J., Shen, Y. et al. Biochem. J., 390 (2005),pp. 501-511
|
[56] |
Ferrandiz, M.L., Martinez, M., De Juan, E. et al. Impairment of mitochondrial oxidative phosphorylation in the brain of aged mice Brain Res., 644 (1994),pp. 335-338
|
[57] |
Feser, J., Truong, D., Das, C. et al. Elevated histone expression promotes life span extension Mol. Cell, 39 (2010),pp. 724-735
|
[58] |
Fiesel, F.C., Ando, M., Hudec, R. et al. (Patho-)physiological relevance of PINK1-dependent ubiquitin phosphorylation EMBO Rep., 16 (2015),pp. 1114-1130
|
[59] |
Gaczynska, M., Osmulski, P.A., Ward, W.F. Caretaker or undertaker? The role of the proteasome in aging Mech. Ageing Dev., 122 (2001),pp. 235-254
|
[60] |
Gartner, L.P., Gartner, R.C. J. Gerontol., 31 (1976),pp. 396-404
|
[61] |
Gems, D., Doonan, R. Cell Cycle, 8 (2009),pp. 1681-1687
|
[62] |
Gottschling, D.E., Nystrom, T. The upsides and downsides of organelle interconnectivity Cell, 169 (2017),pp. 24-34
|
[63] |
Gough, N.R. Emerging roles for organelles in cellular regulation Sci. Signal., 9 (2016)
|
[64] |
Gray, D.A., Tsirigotis, M., Woulfe, J. Ubiquitin, proteasomes, and the aging brain Sci. Aging Knowl. Environ. (2003),p. 2003
|
[65] |
Greene, J.C., Whitworth, A.J., Kuo, I. et al. Proc. Natl. Acad. Sci. U. S. A., 100 (2003),pp. 4078-4083
|
[66] |
Hansen, M., Rubinsztein, D.C., Walker, D.W. Autophagy as a promoter of longevity: insights from model organisms Nat. Rev. Mol. Cell Biol., 19 (2018),pp. 579-593
|
[67] |
Harman, D. Aging: a theory based on free radical and radiation chemistry J. Gerontol., 11 (1956),pp. 298-300
|
[68] |
Harman, D. The biologic clock: the mitochondria? J. Am. Geriatr. Soc., 20 (1972),pp. 145-147
|
[69] |
Hashimoto, M., Hossain, S., Masumura, S. Effect of aging on plasma membrane fluidity of rat aortic endothelial cells Exp. Gerontol., 34 (1999),pp. 687-698
|
[70] |
Hillered, L., Ernster, L. J. Cereb. Blood Flow Metab., 3 (1983),pp. 207-214
|
[71] |
Hoppins, S., Lackner, L., Nunnari, J. The machines that divide and fuse mitochondria Annu. Rev. Biochem., 76 (2007),pp. 751-780
|
[72] |
Hruban, Z., Spargo, B., Swift, H. et al. Focal cytoplasmic degradation Am. J. Pathol., 42 (1963),pp. 657-683
|
[73] |
Hsu, A.L., Murphy, C.T., Kenyon, C. Regulation of aging and age-related disease by DAF-16 and heat-shock factor Science, 300 (2003),pp. 1142-1145
|
[74] |
Hu, Z., Chen, K., Xia, Z. et al. Nucleosome loss leads to global transcriptional up-regulation and genomic instability during yeast aging Genes Dev., 28 (2014),pp. 396-408
|
[75] |
Huang, K., Chen, W., Zhu, F. et al. BMC Genomics, 20 (2019),p. 50
|
[76] |
Hughes, A.L., Gottschling, D.E. An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast Nature, 492 (2012),pp. 261-265
|
[77] |
Ivanov, A., Pawlikowski, J., Manoharan, I. et al. Lysosome-mediated processing of chromatin in senescence J. Cell Biol., 202 (2013),pp. 129-143
|
[78] |
James, A., , Mayer, D., Terhoeve, S. et al. Nucleus, 4 (2013),pp. 123-133
|
[79] |
Jeon, H.J., Kim, Y.S., Kim, J.G. et al. Mech. Ageing Dev., 173 (2018),pp. 50-60
|
[80] |
Joos, J., Saadatmand, A., Schnabel, C. et al. Sci. Rep., 8 (2018),p. 2940
|
[81] |
Kaeberlein, M., , Steffen, K.K., Westman, E.A. et al. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients Science, 310 (2005),pp. 1193-1196
|
[82] |
Keller, J.N., Gee, J., Ding, Q. The proteasome in brain aging Ageing Res. Rev., 1 (2002),pp. 279-293
|
[83] |
Kenyon, C., Chang, J., Gensch, E. et al. Nature, 366 (1993),pp. 461-464
|
[84] |
Kenyon, C.J. The genetics of ageing Nature, 464 (2010),pp. 504-512
|
[85] |
King, V., Tower, J. Dev. Biol., 207 (1999),pp. 107-118
|
[86] |
Krishnan, N., Kretzschmar, D., Rakshit, K. et al. Aging, 1 (2009),pp. 937-948
|
[87] |
Kruegel, U., Robison, B., Dange, T. et al. PLoS Genet., 7 (2011)
|
[88] |
Kwong, L.K., Sohal, R.S. Age-related changes in activities of mitochondrial electron transport complexes in various tissues of the mouse Arch. Biochem. Biophys., 373 (2000),pp. 16-22
|
[89] |
Landis, G.N., Abdueva, D., Skvortsov, D. et al. Proc. Natl. Acad. Sci. U. S. A., 101 (2004),pp. 7663-7668
|
[90] |
Lapointe, J., Hekimi, S. J. Biol. Chem., 283 (2008),pp. 26217-26227
|
[91] |
Lardenoije, R., Iatrou, A., Kenis, G. et al. The epigenetics of aging and neurodegeneration Prog. Neurobiol., 131 (2015),pp. 21-64
|
[92] |
Larson, K., Yan, S.-J., Tsurumi, A. et al. Heterochromatin formation promotes longevity and represses ribosomal RNA synthesis PLoS Genet., 8 (2012)
|
[93] |
Lefaki, M., Papaevgeniou, N., Chondrogianni, N. Redox regulation of proteasome function Redox Biol., 13 (2017),pp. 452-458
|
[94] |
Legakis, J.E., Koepke, J.I., Jedeszko, C. et al. Peroxisome senescence in human fibroblasts Mol. Biol. Cell, 13 (2002),pp. 4243-4255
|
[95] |
Li, W., Prazak, L., Chatterjee, N. et al. Nat. Neurosci., 16 (2013),p. 529
|
[96] |
Li, Y., Hassinger, L., Thomson, T. et al. Lamin mutations accelerate aging via defective export of mitochondrial mRNAs through nuclear envelope budding Curr. Biol., 26 (2016),pp. 2052-2059
|
[97] |
Liochev, S.I. Reactive oxygen species and the free radical theory of aging Free Radic. Biol. Med., 60 (2013),pp. 1-4
|
[98] |
Liu, L., Cheung, T.H., Charville, G.W. et al. Chromatin modifications as determinants of muscle stem cell quiescence and chronological aging Cell Rep., 4 (2013),pp. 189-204
|
[99] |
Liu, X., Jiang, N., Hughes, B. et al. Genes Dev., 19 (2005),pp. 2424-2434
|
[100] |
Lopez-Fabuel, I., Le Douce, J., Logan, A. et al. Complex I assembly into supercomplexes determines differential mitochondrial ROS production in neurons and astrocytes Proc. Natl. Acad. Sci. U. S. A., 113 (2016),pp. 13063-13068
|
[101] |
Lopez-Otin, C., Blasco, M.A., Partridge, L. et al. The hallmarks of aging Cell, 153 (2013),pp. 1194-1217
|
[102] |
López-Otín, C., Blasco, M.A., Partridge, L. et al. The hallmarks of aging Cell, 153 (2013),pp. 1194-1217
|
[103] |
Ma, Z., Wang, H., Cai, Y. et al. eLife, 7 (2018)
|
[104] |
Magwere, T., Pamplona, R., Miwa, S. et al. J. Gerontol. A Biol. Sci. Med. Sci., 61 (2006),pp. 136-145
|
[105] |
Mao, L., Romer, I., Nebrich, G. et al. Aging in mouse brain is a cell/tissue-level phenomenon exacerbated by proteasome loss J. Proteome Res., 9 (2010),pp. 3551-3560
|
[106] |
Martins, T., Eusebio, N., Correia, A. et al. Open Biol., 7 (2017),p. 160258
|
[107] |
McCarroll, S.A., Murphy, C.T., Zou, S. et al. Comparing genomic expression patterns across species identifies shared transcriptional profile in aging Nat. Genet., 36 (2004),pp. 197-204
|
[108] |
Michaud, S., Morrow, G., Marchand, J. et al. Prog. Mol. Subcell. Biol., 28 (2002),pp. 79-101
|
[109] |
Miquel, J., Bensch, K.G., Philpott, D.E. J. Invertebr. Pathol., 19 (1972),pp. 156-159
|
[110] |
Mockett, R.J., Sohal, B.H., Sohal, R.S. Free Radic. Biol. Med., 49 (2010),pp. 2028-2031
|
[111] |
Moghadam, N.N., Holmstrup, M., Manenti, T. et al. Exp. Gerontol., 72 (2015),pp. 177-183
|
[112] |
Moghadam, N.N., Holmstrup, M., Pertoldi, C. et al. Exp. Gerontol., 48 (2013),pp. 1362-1368
|
[113] |
Morel, F., Mazet, F., Touraille, S. et al. Mech. Ageing Dev., 84 (1995),pp. 171-181
|
[114] |
Morley, J.F., Morimoto, R.I. Mol. Biol. Cell, 15 (2004),pp. 657-664
|
[115] |
Morrow, G., Heikkila, J.J., Tanguay, R.M. Cell Stress Chaperones, 11 (2006),pp. 51-60
|
[116] |
Morrow, G., Samson, M., Michaud, S. et al. FASEB J., 18 (2004),pp. 598-599
|
[117] |
Morrow, G., Tanguay, R.M. Front. Genet., 6 (2015),p. 1026
|
[118] |
Murakami, A., Nagao, K., Juni, N. et al. J. Biol. Chem., 292 (2017),pp. 19976-19986
|
[119] |
Murphy, M.P. How mitochondria produce reactive oxygen species Biochem. J., 417 (2009),pp. 1-13
|
[120] |
Narayan, V., Ly, T., Pourkarimi, E. et al. Cell Syst., 3 (2016),pp. 144-159
|
[121] |
Nargund, A.M., Pellegrino, M.W., Fiorese, C.J. et al. Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation Science, 337 (2012),pp. 587-590
|
[122] |
Navarro, A., Boveris, A. Rat brain and liver mitochondria develop oxidative stress and lose enzymatic activities on aging Am. J. Physiol. Regul. Integr. Comp. Physiol., 287 (2004),pp. R1244-R1249
|
[123] |
Nezis, I.P., Simonsen, A., Sagona, A.P. et al. J. Cell Biol., 180 (2008),pp. 1065-1071
|
[124] |
Nishimura, M., Kumsta, C., Kaushik, G. et al. A dual role for integrin-linked kinase and β1-integrin in modulating cardiac aging Aging Cell, 13 (2014),pp. 431-440
|
[125] |
Nystrom, T. Role of oxidative carbonylation in protein quality control and senescence EMBO J., 24 (2005),pp. 1311-1317
|
[126] |
Okumura, T., Takeda, K., Taniguchi, K. et al. PLoS One, 9 (2014)
|
[127] |
Owusu-Ansah, E., Song, W., Perrimon, N. Muscle mitohormesis promotes longevity via systemic repression of insulin signaling Cell, 155 (2013),pp. 699-712
|
[128] |
Padash-Barmchi, M., Browne, K., Sturgeon, K. et al. Control of Gliotactin localization and levels by tyrosine phosphorylation and endocytosis is necessary for survival of polarized epithelia J. Cell Sci., 123 (2010),pp. 4052-4062
|
[129] |
Parkhitko, A.A., Binari, R., Zhang, N. et al. Genes Dev., 30 (2016),pp. 1409-1422
|
[130] |
Peleg, S., Feller, C., Forne, I. et al. EMBO Rep., 17 (2016),pp. 455-469
|
[131] |
Perichon, R., Bourre, J.M., Kelly, J.F. et al. The role of peroxisomes in aging Cell. Mol. Life Sci., 54 (1998),pp. 641-652
|
[132] |
Petrovsky, R., Krohne, G., Großhans, J. Overexpression of the lamina proteins Lamin and Kugelkern induces specific ultrastructural alterations in the morphology of the nuclear envelope of intestinal stem cells and enterocytes Eur. J. Cell Biol., 97 (2018),pp. 102-113
|
[133] |
Pickering, A.M., Staab, T.A., Tower, J. et al. J. Exp. Biol., 216 (2013),pp. 543-553
|
[134] |
Pickles, S., Vigie, P., Youle, R.J. Mitophagy and quality control mechanisms in mitochondrial maintenance Curr. Biol., 28 (2018),pp. R170-R185
|
[135] |
Ponpuak, M., Mandell, M.A., Kimura, T. et al. Secretory autophagy Curr. Opin. Cell Biol., 35 (2015),pp. 106-116
|
[136] |
Rana, A., Oliveira, M.P., Khamoui, A.V. et al. Nat. Commun., 8 (2017),p. 448
|
[137] |
Rana, A., Rera, M., Walker, D.W. Parkin overexpression during aging reduces proteotoxicity, alters mitochondrial dynamics, and extends lifespan Proc. Natl. Acad. Sci. U. S. A., 110 (2013),pp. 8638-8643
|
[138] |
Rea, S.L., Ventura, N., Johnson, T.E. PLoS Biol., 5 (2007),p. e259
|
[139] |
Rera, M., Bahadorani, S., Cho, J. et al. Cell Metabol., 14 (2011),pp. 623-634
|
[140] |
Resnik-Docampo, M., Koehler, C.L., Clark, R.I. et al. Tricellular junctions regulate intestinal stem cell behaviour to maintain homeostasis Nat. Cell Biol., 19 (2017),p. 52
|
[141] |
Rogina, B., Helfand, S.L. Sir2 mediates longevity in the fly through a pathway related to calorie restriction Proc. Natl. Acad. Sci. U. S. A., 101 (2004),pp. 15998-16003
|
[142] |
Rogina, B., Helfand, S.L., Frankel, S. Science, 298 (2002)
|
[143] |
Rubinsztein, D.C., Marino, G., Kroemer, G. Autophagy and aging Cell, 146 (2011),pp. 682-695
|
[144] |
Savva, Y.A., Jepson, J.E., Chang, Y.-J. et al. RNA editing regulates transposon-mediated heterochromatic gene silencing Nat. Commun., 4 (2013),p. 2745
|
[145] |
Sessions, A.O., Kaushik, G., Parker, S. et al. Matrix Biol., 62 (2017),pp. 15-27
|
[146] |
Shang, F., Taylor, A. Ubiquitin-proteasome pathway and cellular responses to oxidative stress Free Radic. Biol. Med., 51 (2011),pp. 5-16
|
[147] |
Shiba, T., Saigo, K. Nature, 302 (1983),pp. 119-124
|
[148] |
Shiva, S., Brookes, P.S., Patel, R.P. et al. Nitric oxide partitioning into mitochondrial membranes and the control of respiration at cytochrome c oxidase Proc. Natl. Acad. Sci. U. S. A., 98 (2001),pp. 7212-7217
|
[149] |
Siebold, A.P., Banerjee, R., Tie, F. et al. Proc. Natl. Acad. Sci. U. S. A., 107 (2010),pp. 169-174
|
[150] |
Silvestrini, M.J., Johnson, J.R., Kumar, A.V. et al. Nuclear export inhibition enhances HLH-30/TFEB activity, autophagy, and lifespan Cell Rep., 23 (2018),pp. 1915-1921
|
[151] |
Simonsen, A., Cumming, R.C., Brech, A. et al. Autophagy, 4 (2008),pp. 176-184
|
[152] |
Smirnova, E., Griparic, L., Shurland, D.L. et al. Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells Mol. Biol. Cell, 12 (2001),pp. 2245-2256
|
[153] |
Sohal, R.S. Exp. Gerontol., 5 (1970),pp. 213-216
|
[154] |
Stadtman, E.R. Protein oxidation and aging Science, 257 (1992),pp. 1220-1224
|
[155] |
Sun, J., Folk, D., Bradley, T.J. et al. Genetics, 161 (2002),pp. 661-672
|
[156] |
Sun, J., Tower, J. Mol. Cell Biol., 19 (1999),pp. 216-228
|
[157] |
Sun, N., Yun, J., Liu, J. et al. Mol. Cell, 60 (2015),pp. 685-696
|
[158] |
Sutphin, G.L., Korstanje, R.
|
[159] |
Sykiotis, G.P., Bohmann, D. Dev. Cell, 14 (2008),pp. 76-85
|
[160] |
Sykiotis, G.P., Bohmann, D. Stress-activated cap 'n' collar transcription factors in aging and human disease Sci. Signal., 3 (2010),p. re3
|
[161] |
Tanaka, K. The proteasome: overview of structure and functions Proc. Jpn. Acad. Ser. B Phys. Biol. Sci., 85 (2009),pp. 12-36
|
[162] |
Taneike, M., Yamaguchi, O., Nakai, A. et al. Inhibition of autophagy in the heart induces age-related cardiomyopathy Autophagy, 6 (2010),pp. 600-606
|
[163] |
Tatar, M., Kopelman, A., Epstein, D. et al. Science, 292 (2001),pp. 107-110
|
[164] |
Taylor, R.C., Berendzen, K.M., Dillin, A. Systemic stress signalling: understanding the cell non-autonomous control of proteostasis Nat. Rev. Mol. Cell Biol., 15 (2014),pp. 211-217
|
[165] |
Terman, A., Brunk, U.T. Lipofuscin Int. J. Biochem. Cell Biol., 36 (2004),pp. 1400-1404
|
[166] |
Theocharis, A.D., Skandalis, S.S., Gialeli, C. et al. Extracellular matrix structure Adv. Drug Deliv. Rev., 97 (2016),pp. 4-27
|
[167] |
Tiku, V., Jain, C., Raz, Y. et al. Small nucleoli are a cellular hallmark of longevity Nat. Commun., 8 (2017),p. 16083
|
[168] |
Tonoki, A., Kuranaga, E., Tomioka, T. et al. Genetic evidence linking age-dependent attenuation of the 26S proteasome with the aging process Mol. Cell Biol., 29 (2009),pp. 1095-1106
|
[169] |
Toroser, D., Orr, W.C., Sohal, R.S. Biochem. Biophys. Res. Commun., 363 (2007),pp. 418-424
|
[170] |
Tower, J., Landis, G., Gao, R. et al. J. Gerontol. A Biol. Sci. Med. Sci., 69 (2014),pp. 253-259
|
[171] |
Tran, J.R., Chen, H., Zheng, X. et al. Lamin in inflammation and aging Curr. Opin. Cell Biol., 40 (2016),pp. 124-130
|
[172] |
Tsakiri, E.N., Sykiotis, G.P., Papassideri, I.S. et al. FASEB J., 27 (2013),pp. 2407-2420
|
[173] |
Tsakiri, E.N., Sykiotis, G.P., Papassideri, I.S. et al. Aging Cell, 12 (2013),pp. 802-813
|
[174] |
Tulin, A., Stewart, D., Spradling, A.C. Genes Dev., 16 (2002),pp. 2108-2119
|
[175] |
Tullet, J.M., Hertweck, M., An, J.H. et al. Cell, 132 (2008),pp. 1025-1038
|
[176] |
Twig, G., Shirihai, O.S. The interplay between mitochondrial dynamics and mitophagy Antioxid. Redox Signal., 14 (2011),pp. 1939-1951
|
[177] |
Van Raamsdonk, J.M., Hekimi, S. PLoS Genet., 5 (2009)
|
[178] |
Vaughan, L., Marley, R., Miellet, S. et al. Exp. Gerontol., 109 (2018),pp. 59-66
|
[179] |
Vernace, V.A., Arnaud, L., Schmidt-Glenewinkel, T. et al. FASEB J., 21 (2007),pp. 2672-2682
|
[180] |
Vilchez, D., Morantte, I., Liu, Z. et al. Nature, 489 (2012),pp. 263-268
|
[181] |
Voges, D., Zwickl, P., Baumeister, W. The 26S proteasome: a molecular machine designed for controlled proteolysis Annu. Rew. Biochem., 68 (1999),pp. 1015-1068
|
[182] |
Wagner, N., Laugks, U., Heckmann, M. et al. J. Comp. Neurol., 523 (2015),pp. 2457-2475
|
[183] |
Walker, D.W., Benzer, S. Proc. Natl. Acad. Sci. U. S. A., 101 (2004),pp. 10290-10295
|
[184] |
Wang, C., Youle, R.J. The role of mitochondria in apoptosis Annu. Rev. Genet., 43 (2009),pp. 95-118
|
[185] |
Weir, H.J., Yao, P., Huynh, F.K. et al. Dietary restriction and AMPK increase lifespan via mitochondrial network and peroxisome remodeling Cell Metabol., 26 (2017),pp. 884-896 e885
|
[186] |
Weissman, A.M., Shabek, N., Ciechanover, A. The predator becomes the prey: regulating the ubiquitin system by ubiquitylation and degradation Nat. Rev. Mol. Cell Biol., 12 (2011),pp. 605-620
|
[187] |
Whitaker, R., Faulkner, S., Miyokawa, R. et al. Aging, 5 (2013),pp. 682-691
|
[188] |
Wilhelm, T., Byrne, J., Medina, R. et al. Genes Dev., 31 (2017),pp. 1561-1572
|
[189] |
Wilmes, A.C., Klinke, N., Rotstein, B. et al. Biol. Open, 7 (2018)
|
[190] |
Wood, J.G., Hillenmeyer, S., Lawrence, C. et al. Aging Cell, 9 (2010),pp. 971-978
|
[191] |
Wood, J.G., Jones, B.C., Jiang, N. et al. Proc. Natl. Acad. Sci. U. S. A., 113 (2016),pp. 11277-11282
|
[192] |
Yan, L.J., Levine, R.L., Sohal, R.S. Oxidative damage during aging targets mitochondrial aconitase Proc. Natl. Acad. Sci. U. S. A., 94 (1997),pp. 11168-11172
|
[193] |
Yan, L.J., Sohal, R.S. Mitochondrial adenine nucleotide translocase is modified oxidatively during aging Proc. Natl. Acad. Sci. U. S. A., 95 (1998),pp. 12896-12901
|
[194] |
Yang, W., Hekimi, S. PLoS Biol., 8 (2010)
|
[195] |
Youle, R.J., Narendra, D.P. Mechanisms of mitophagy Nat. Rev. Mol. Cell Biol., 12 (2011),pp. 9-14
|
[196] |
Youle, R.J., van der Bliek, A.M. Mitochondrial fission, fusion, and stress Science, 337 (2012),pp. 1062-1065
|
[197] |
Yun, J., Finkel, T. Mitohormesis Cell Metab., 19 (2014),pp. 757-766
|
[198] |
Yung, P.Y.K., Stuetzer, A., Fischle, W. et al. Cell Rep., 11 (2015),pp. 1437-1445
|
[199] |
Zhang, G., Li, J., Purkayastha, S. et al. Hypothalamic programming of systemic ageing involving IKK-beta, NF-kappaB and GnRH Nature, 497 (2013),pp. 211-216
|
[200] |
Zhu, C.T., Ingelmo, P., Rand, D.M. PLoS Genet., 10 (2014)
|
[201] |
Zid, B.M., Rogers, A.N., Katewa, S.D. et al. Cell, 139 (2009),pp. 149-160
|