5.9
CiteScore
5.9
Impact Factor
Volume 46 Issue 4
Apr.  2019
Turn off MathJax
Article Contents

Die in pieces: How Drosophila sheds light on neurite degeneration and clearance

doi: 10.1016/j.jgg.2019.03.010
More Information
  • Corresponding author: E-mail address: chun.han@cornell.edu (Chun Han)
  • Received Date: 2018-11-21
  • Accepted Date: 2019-03-26
  • Rev Recd Date: 2019-03-24
  • Available Online: 2019-04-23
  • Publish Date: 2019-04-20
  • Dendrites and axons are delicate neuronal membrane extensions that undergo degeneration after physical injuries. In neurodegenerative diseases, they often degenerate prior to neuronal death. Understanding the mechanisms of neurite degeneration has been an intense focus of neurobiology research in the last two decades. As a result, many discoveries have been made in the molecular pathways that lead to neurite degeneration and the cell-cell interactions responsible for the subsequent clearance of neuronal debris. Drosophila melanogaster has served as a prime in vivo model system for identifying and characterizing the key molecular players in neurite degeneration, thanks to its genetic tractability and easy access to its nervous system. The knowledge learned in the fly provided targets and fuel for studies in other model systems that have further enhanced our understanding of neurodegeneration. In this review, we will introduce the experimental systems developed in Drosophila to investigate injury-induced neurite degeneration, and then discuss the biological pathways that drive degeneration. We will also cover what is known about the mechanisms of how phagocytes recognize and clear degenerating neurites, and how recent findings in this area enhance our understanding of neurodegenerative disease pathology.
  • loading
  • [1]
    Almasieh, M., Catrinescu, M.M., Binan, L. et al. Axonal degeneration in retinal ganglion cells is associated with a membrane polarity-sensitive Redox process J. Neurosci., 37 (2017),pp. 3824-3839
    [2]
    Andersen, M.H., Graversen, H., Fedosov, S.N. et al. Functional analyses of two cellular binding domains of bovine lactadherin Biochemistry, 39 (2000),pp. 6200-6206
    [3]
    Araki, T., Sasaki, Y., Milbrandt, J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration Science, 305 (2004),pp. 1010-1013
    [4]
    Awasaki, T., Ito, K. Curr. Biol., 14 (2004),pp. 668-677
    [5]
    Awasaki, T., Tatsumi, R., Takahashi, K. et al. Neuron, 50 (2006),pp. 855-867
    [6]
    Babetto, E., Beirowski, B., Russler, E.V. et al. The Phr1 ubiquitin ligase promotes injury-induced axon self-destruction Cell Rep., 3 (2013),pp. 1422-1429
    [7]
    Beirowski, B., Morreale, G., Conforti, L. et al. WldS can delay Wallerian degeneration in mice when interaction with valosin-containing protein is weakened Neuroscience, 166 (2010),pp. 201-211
    [8]
    Bellen, H.J., Tong, C., Tsuda, H. Nat. Rev. Neurosci., 11 (2010),pp. 514-522
    [9]
    Bialas, A.R., Stevens, B. TGF-beta signaling regulates neuronal C1q expression and developmental synaptic refinement Nat. Neurosci., 16 (2013),pp. 1773-1782
    [10]
    Brelstaff, J., Tolkovsky, A.M., Ghetti, B. et al. Living neurons with tau filaments aberrantly expose phosphatidylserine and are phagocytosed by microglia Cell Rep., 24 (2018),pp. 1939-1948.e4
    [11]
    Brown, G.C., Neher, J.J. Microglial phagocytosis of live neurons Nat. Rev. Neurosci., 15 (2014),pp. 209-216
    [12]
    Charng, W.L., Yamamoto, S., Bellen, H.J. Curr. Opin. Neurobiol., 27 (2014),pp. 158-164
    [13]
    Coleman, M.P., Freeman, M.R. Wallerian degeneration, wld(s), and nmnat Annu. Rev. Neurosci., 33 (2010),pp. 245-267
    [14]
    Collins, C.A., Wairkar, Y.P., Johnson, S.L. et al. Highwire restrains synaptic growth by attenuating a MAP kinase signal Neuron, 51 (2006),pp. 57-69
    [15]
    Di Stefano, M., Nascimento-Ferreira, I., Orsomando, G. et al. A rise in NAD precursor nicotinamide mononucleotide (NMN) after injury promotes axon degeneration Cell Death Differ., 22 (2015),pp. 731-742
    [16]
    Dobritsa, A.A., van der Goes van Naters, W., Warr, C.G. et al. Neuron, 37 (2003),pp. 827-841
    [17]
    Doherty, J., Logan, M.A., Tasdemir, O.E. et al. J. Neurosci., 29 (2009),pp. 4768-4781
    [18]
    Essuman, K., Summers, D.W., Sasaki, Y. et al. Neuron, 93 (2017),pp. 1334-1343
    [19]
    Fang, Y., Soares, L., Bonini, N.M. Nat. Protoc., 8 (2013),pp. 810-819
    [20]
    Farley, J.E., Burdett, T.C., Barria, R. et al. Transcription factor Pebbled/RREB1 regulates injury-induced axon degeneration Proc. Natl. Acad. Sci. U. S. A., 115 (2018),pp. 1358-1363
    [21]
    Fourgeaud, L., Traves, P.G., Tufail, Y. et al. TAM receptors regulate multiple features of microglial physiology Nature, 532 (2016),pp. 240-244
    [22]
    Franc, N.C., Dimarcq, J.L., Lagueux, M. et al. Immunity, 4 (1996),pp. 431-443
    [23]
    Freeman, M.R. Cold Spring Harb. Perspect. Biol., 7 (2015)
    [24]
    Fuentes-Medel, Y., Logan, M.A., Ashley, J. et al. Glia and muscle sculpt neuromuscular arbors by engulfing destabilized synaptic boutons and shed presynaptic debris PLoS Biol., 7 (2009),p. e1000184
    [25]
    Fujii, T., Sakata, A., Nishimura, S. et al. TMEM16F is required for phosphatidylserine exposure and microparticle release in activated mouse platelets Proc. Natl. Acad. Sci. U. S. A., 112 (2015),pp. 12800-12805
    [26]
    Gadani, S.P., Walsh, J.T., Lukens, J.R. et al. Dealing with danger in the CNS: the response of the immune system to injury Neuron, 87 (2015),pp. 47-62
    [27]
    Gadea, A., Schinelli, S., Gallo, V. Endothelin-1 regulates astrocyte proliferation and reactive gliosis via a JNK/c-Jun signaling pathway J. Neurosci., 28 (2008),pp. 2394-2408
    [28]
    Gautier, E.L., Shay, T., Miller, J. et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages Nat. Immunol., 13 (2012),pp. 1118-1128
    [29]
    Geisler, S., Doan, R.A., Strickland, A. et al. Brain, 139 (2016),pp. 3092-3108
    [30]
    Gerdts, J., Brace, E.J., Sasaki, Y. et al. Science, 348 (2015),pp. 453-457
    [31]
    Gerdts, J., Summers, D.W., Milbrandt, J. et al. Neuron, 89 (2016),pp. 449-460
    [32]
    Gilley, J., Coleman, M.P. Endogenous Nmnat2 is an essential survival factor for maintenance of healthy axons PLoS Biol., 8 (2010),p. e1000300
    [33]
    Gilley, J., Orsomando, G., Nascimento-Ferreira, I. et al. Absence of SARM1 rescues development and survival of NMNAT2-deficient axons Cell Rep., 10 (2015),pp. 1974-1981
    [34]
    Gossmann, T.I., Ziegler, M., Puntervoll, P. et al. FEBS J., 279 (2012),pp. 3355-3363
    [35]
    Grueber, W.B., Jan, L.Y., Jan, Y.N. Development, 129 (2002),pp. 2867-2878
    [36]
    Gyorffy, B.A., Kun, J., Torok, G. et al. Local apoptotic-like mechanisms underlie complement-mediated synaptic pruning Proc. Natl. Acad. Sci. U. S. A., 115 (2018),pp. 6303-6308
    [37]
    Hakim, Y., Yaniv, S.P., Schuldiner, O. PLoS One, 9 (2014),p. e86178
    [38]
    Han, C., Jan, L.Y., Jan, Y.N. Proc. Natl. Acad. Sci. U. S. A., 108 (2011),pp. 9673-9678
    [39]
    Han, C., Song, Y., Xiao, H. et al. Neuron, 81 (2014),pp. 544-560
    [40]
    Han, C., Wang, D., Soba, P. et al. Neuron, 73 (2012),pp. 64-78
    [41]
    Hanayama, R., Tanaka, M., Miwa, K. et al. Identification of a factor that links apoptotic cells to phagocytes Nature, 417 (2002),pp. 182-187
    [42]
    Henninger, N., Bouley, J., Sikoglu, E.M. et al. Attenuated traumatic axonal injury and improved functional outcome after traumatic brain injury in mice lacking Sarm1 Brain, 139 (2016),pp. 1094-1105
    [43]
    Hicks, A.N., Lorenzetti, D., Gilley, J. et al. Nicotinamide mononucleotide adenylyltransferase 2 (Nmnat2) regulates axon integrity in the mouse embryo PLoS One, 7 (2012),p. e47869
    [44]
    Hong, S., Beja-Glasser, V.F., Nfonoyim, B.M. et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models Science, 352 (2016),pp. 712-716
    [45]
    Hoopfer, E.D., McLaughlin, T., Watts, R.J. et al. Wlds protection distinguishes axon degeneration following injury from naturally occurring developmental pruning Neuron, 50 (2006),pp. 883-895
    [46]
    Ito, Y., Ofengeim, D., Najafov, A. et al. RIPK1 mediates axonal degeneration by promoting inflammation and necroptosis in ALS Science, 353 (2016),pp. 603-608
    [47]
    Kerschensteiner, M., Schwab, M.E., Lichtman, J.W. et al. Nat. Med., 11 (2005),pp. 572-577
    [48]
    Kim, M.E., Shrestha, B.R., Blazeski, R. et al. Neuron, 73 (2012),pp. 79-91
    [49]
    Kim, Y.E., Chen, J., Chan, J.R. et al. Engineering a polarity-sensitive biosensor for time-lapse imaging of apoptotic processes and degeneration Nat. Methods, 7 (2010),pp. 67-73
    [50]
    Koopman, G., Reutelingsperger, C.P., Kuijten, G.A. et al. Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis Blood, 84 (1994),pp. 1415-1420
    [51]
    Kuraishi, T., Nakagawa, Y., Nagaosa, K. et al. EMBO J., 28 (2009),pp. 3868-3878
    [52]
    Kurant, E., Axelrod, S., Leaman, D. et al. Six-microns-under acts upstream of Draper in the glial phagocytosis of apoptotic neurons Cell, 133 (2008),pp. 498-509
    [53]
    Lee, J.C. Electron microscopy of Wallerian degeneration J. Comp. Neurol., 120 (1963),pp. 65-79
    [54]
    Lemke, G. Biology of the TAM receptors Cold Spring Harb. Perspect. Biol., 5 (2013),p. a009076
    [55]
    Leventis, P.A., Grinstein, S. The distribution and function of phosphatidylserine in cellular membranes Annu. Rev. Biophys., 39 (2010),pp. 407-427
    [56]
    Liu, H.W., Smith, C.B., Schmidt, M.S. et al. Proc. Natl. Acad. Sci. U. S. A., 115 (2018),pp. 10654-10659
    [57]
    Liu, X.B., Low, L.K., Jones, E.G. et al. Stereotyped axon pruning via plexin signaling is associated with synaptic complex elimination in the hippocampus J. Neurosci., 25 (2005),pp. 9124-9134
    [58]
    Low, L.K., Liu, X.B., Faulkner, R.L. et al. Plexin signaling selectively regulates the stereotyped pruning of corticospinal axons from visual cortex Proc. Natl. Acad. Sci. U. S. A., 105 (2008),pp. 8136-8141
    [59]
    Lu, T.Y., MacDonald, J.M., Neukomm, L.J. et al. Axon degeneration induces glial responses through Draper-TRAF4-JNK signalling Nat. Commun., 8 (2017),p. 14355
    [60]
    Lunn, E.R., Perry, V.H., Brown, M.C. et al. Absence of Wallerian degeneration does not hinder regeneration in peripheral nerve Eur. J. Neurosci., 1 (1989),pp. 27-33
    [61]
    Luo, L., O'Leary, D.D. Axon retraction and degeneration in development and disease Annu. Rev. Neurosci., 28 (2005),pp. 127-156
    [62]
    MacDonald, J.M., Beach, M.G., Porpiglia, E. et al. Neuron, 50 (2006),pp. 869-881
    [63]
    Mack, T.G., Reiner, M., Beirowski, B. et al. Nat. Neurosci., 4 (2001),pp. 1199-1206
    [64]
    Mapes, J., Chen, Y.Z., Kim, A. et al. CED-1, CED-7, and TTR-52 regulate surface phosphatidylserine expression on apoptotic and phagocytic cells Curr. Biol., 22 (2012),pp. 1267-1275
    [65]
    Martin, S.M., O'Brien, G.S., Portera-Cailliau, C. et al. Wallerian degeneration of zebrafish trigeminal axons in the skin is required for regeneration and developmental pruning Development, 137 (2010),pp. 3985-3994
    [66]
    McGurk, L., Berson, A., Bonini, N.M. Genetics, 201 (2015),pp. 377-402
    [67]
    Miller, B.R., Press, C., Daniels, R.W. et al. A dual leucine kinase-dependent axon self-destruction program promotes Wallerian degeneration Nat. Neurosci., 12 (2009),pp. 387-389
    [68]
    Nakata, K., Abrams, B., Grill, B. et al. Regulation of a DLK-1 and p38 MAP kinase pathway by the ubiquitin ligase RPM-1 is required for presynaptic development Cell, 120 (2005),pp. 407-420
    [69]
    Nandrot, E.F., Anand, M., Almeida, D. et al. Essential role for MFG-E8 as ligand for alphavbeta5 integrin in diurnal retinal phagocytosis Proc. Natl. Acad. Sci. U. S. A., 104 (2007),pp. 12005-12010
    [70]
    Neniskyte, U., Gross, C.T. Errant gardeners: glial-cell-dependent synaptic pruning and neurodevelopmental disorders Nat. Rev. Neurosci., 18 (2017),pp. 658-670
    [71]
    Neniskyte, U., Neher, J.J., Brown, G.C. Neuronal death induced by nanomolar amyloid beta is mediated by primary phagocytosis of neurons by microglia J. Biol. Chem., 286 (2011),pp. 39904-39913
    [72]
    Neukomm, L.J., Burdett, T.C., Gonzalez, M.A. et al. Proc. Natl. Acad. Sci. U. S. A., 111 (2014),pp. 9965-9970
    [73]
    Neukomm, L.J., Burdett, T.C., Seeds, A.M. et al. Axon death pathways converge on Axundead to promote functional and structural axon disassembly Neuron, 95 (2017),pp. 78-91
    [74]
    Nonaka, S., Ando, Y., Kanetani, T. et al. Signaling pathway for phagocyte priming upon encounter with apoptotic cells J. Biol. Chem., 292 (2017),pp. 8059-8072
    [75]
    Okada, R., Nagaosa, K., Kuraishi, T. et al. J. Biol. Chem., 287 (2012),pp. 3138-3146
    [76]
    Osterloh, J.M., Yang, J., Rooney, T.M. et al. dSarm/Sarm1 is required for activation of an injury-induced axon death pathway Science, 337 (2012),pp. 481-484
    [77]
    Paidassi, H., Tacnet-Delorme, P., Garlatti, V. et al. C1q binds phosphatidylserine and likely acts as a multiligand-bridging molecule in apoptotic cell recognition J. Immunol., 180 (2008),pp. 2329-2338
    [78]
    Paulusma, C.C., Folmer, D.E., Ho-Mok, K.S. et al. ATP8B1 requires an accessory protein for endoplasmic reticulum exit and plasma membrane lipid flippase activity Hepatology, 47 (2008),pp. 268-278
    [79]
    Poe, A.R., Tang, L., Wang, B. et al. Proc. Natl. Acad. Sci. U. S. A., 114 (2017),pp. E8062-E8071
    [80]
    Poe, A.R., Wang, B., Sapar, M.L. et al. Genetics, 211 (2019),pp. 459-472
    [81]
    Presumey, J., Bialas, A.R., Carroll, M.C. Complement system in neural synapse elimination in development and disease Adv. Immunol., 135 (2017),pp. 53-79
    [82]
    Rasmussen, J.P., Sack, G.S., Martin, S.M. et al. Vertebrate epidermal cells are broad-specificity phagocytes that clear sensory axon debris J. Neurosci., 35 (2015),pp. 559-570
    [83]
    Ravichandran, K.S. Find-me and eat-me signals in apoptotic cell clearance: progress and conundrums J. Exp. Med., 207 (2010),pp. 1807-1817
    [84]
    Ravichandran, K.S., Lorenz, U. Engulfment of apoptotic cells: signals for a good meal Nat. Rev. Immunol., 7 (2007),pp. 964-974
    [85]
    Riccomagno, M.M., Kolodkin, A.L. Sculpting neural circuits by axon and dendrite pruning Annu. Rev. Cell Dev. Biol., 31 (2015),pp. 779-805
    [86]
    Saito, K., Fujimura-Kamada, K., Furuta, N. et al. Mol. Biol. Cell, 15 (2004),pp. 3418-3432
    [87]
    Salter, M.W., Stevens, B. Microglia emerge as central players in brain disease Nat. Med., 23 (2017),pp. 1018-1027
    [88]
    Sapar, M.L., Ji, H., Wang, B. et al. Cell Rep., 24 (2018),pp. 2273-2286
    [89]
    Sasaki, Y., Nakagawa, T., Mao, X. et al. eLife, 5 (2016),p. e19749
    [90]
    Sasaki, Y., Vohra, B.P., Baloh, R.H. et al. J. Neurosci., 29 (2009),pp. 6526-6534
    [91]
    Schafer, D.P., Lehrman, E.K., Kautzman, A.G. et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner Neuron, 74 (2012),pp. 691-705
    [92]
    Scheib, J.L., Sullivan, C.S., Carter, B.D. Jedi-1 and MEGF10 signal engulfment of apoptotic neurons through the tyrosine kinase Syk J. Neurosci., 32 (2012),pp. 13022-13031
    [93]
    Schuldiner, O., Yaron, A. Mechanisms of developmental neurite pruning Cell. Mol. Life Sci., 72 (2015),pp. 101-119
    [94]
    Segawa, K., Nagata, S. An apoptotic 'Eat Me' signal: phosphatidylserine exposure Trends Cell Biol., 25 (2015),pp. 639-650
    [95]
    Segawa, K., Suzuki, J., Nagata, S. Constitutive exposure of phosphatidylserine on viable cells Proc. Natl. Acad. Sci. U. S. A., 108 (2011),pp. 19246-19251
    [96]
    Sekar, A., Bialas, A.R., de Rivera, H. et al. Schizophrenia risk from complex variation of complement component 4 Nature, 530 (2016),pp. 177-183
    [97]
    Shacham-Silverberg, V., Sar Shalom, H., Goldner, R. et al. Phosphatidylserine is a marker for axonal debris engulfment but its exposure can be decoupled from degeneration Cell Death Dis., 9 (2018),p. 1116
    [98]
    Stevens, B., Allen, N.J., Vazquez, L.E. et al. The classical complement cascade mediates CNS synapse elimination Cell, 131 (2007),pp. 1164-1178
    [99]
    Suzuki, J., Denning, D.P., Imanishi, E. et al. Xk-related protein 8 and CED-8 promote phosphatidylserine exposure in apoptotic cells Science, 341 (2013),pp. 403-406
    [100]
    Suzuki, J., Fujii, T., Imao, T. et al. Calcium-dependent phospholipid scramblase activity of TMEM16 protein family members J. Biol. Chem., 288 (2013),pp. 13305-13316
    [101]
    Suzuki, J., Umeda, M., Sims, P.J. et al. Calcium-dependent phospholipid scrambling by TMEM16F Nature, 468 (2010),pp. 834-838
    [102]
    Tanaka, K., Fujimura-Kamada, K., Yamamoto, T. Functions of phospholipid flippases J. Biochem., 149 (2011),pp. 131-143
    [103]
    Tao, J., Rolls, M.M. Dendrites have a rapid program of injury-induced degeneration that is molecularly distinct from developmental pruning J. Neurosci., 31 (2011),pp. 5398-5405
    [104]
    Tasdemir-Yilmaz, O.E., Freeman, M.R. Astrocytes engage unique molecular programs to engulf pruned neuronal debris from distinct subsets of neurons Genes Dev., 28 (2014),p. 20
    [105]
    Tavares, L., Pereira, E., Correia, A. et al. Glia, 63 (2015),pp. 1155-1165
    [106]
    Thomas, P.K. Changes in the endoneurial sheaths of peripheral myelinated nerve fibres during Wallerian degeneration J. Anat., 98 (1964),pp. 175-182
    [107]
    Thomas, P.K., Sheldon, H. Tubular arrays derived from myelin breakdown during Wallerian degeneration of peripheral nerve J. Cell Biol., 22 (1964),pp. 715-718
    [108]
    Tufail, Y., Cook, D., Fourgeaud, L. et al. Phosphatidylserine exposure controls viral innate immune responses by microglia Neuron, 93 (2017),pp. 574-586
    [109]
    Tung, T.T., Nagaosa, K., Fujita, Y. et al. J. Biochem., 153 (2013),pp. 483-491
    [110]
    Turkiew, E., Falconer, D., Reed, N. et al. J. Peripher. Nerv. Syst., 22 (2017),pp. 162-171
    [111]
    Wakatsuki, S., Araki, T. Specific phospholipid scramblases are involved in exposure of phosphatidylserine, an "eat-me" signal for phagocytes, on degenerating axons Commun. Integr. Biol., 10 (2017),p. e1296615
    [112]
    Wakatsuki, S., Tokunaga, S., Shibata, M. et al. GSK3B-mediated phosphorylation of MCL1 regulates axonal autophagy to promote Wallerian degeneration J. Cell Biol., 216 (2017),pp. 477-493
    [113]
    Waller, A. Experiments on the section of the glossopharyngeal and hypoglossal nerves of the frog, and observations of the alterations produced thereby in the structure of their primitive fibres Phil. Trans. Roy. Soc. Lond., 140 (1850),pp. 423-429
    [114]
    Wang, J., Zhai, Q., Chen, Y. et al. A local mechanism mediates NAD-dependent protection of axon degeneration J. Cell Biol., 170 (2005),pp. 349-355
    [115]
    Wang, X., Li, W., Zhao, D. et al. Nat. Cell Biol., 12 (2010),pp. 655-664
    [116]
    Watts, R.J., Hoopfer, E.D., Luo, L. Neuron, 38 (2003),pp. 871-885
    [117]
    Wen, Y., Parrish, J.Z., He, R. et al. Nmnat exerts neuroprotective effects in dendrites and axons Mol. Cell. Neurosci., 48 (2011),pp. 1-8
    [118]
    Williams, D.W., Kondo, S., Krzyzanowska, A. et al. Local caspase activity directs engulfment of dendrites during pruning Nat. Neurosci., 9 (2006),pp. 1234-1236
    [119]
    Williams, D.W., Truman, J.W. Development, 132 (2005),pp. 3631-3642
    [120]
    Williams, P.A., Harder, J.M., Foxworth, N.E. et al. Vitamin B3 modulates mitochondrial vulnerability and prevents glaucoma in aged mice Science, 355 (2017),pp. 756-760
    [121]
    Williamson, A.P., Vale, R.D. Spatial control of Draper receptor signaling initiates apoptotic cell engulfment J. Cell Biol., 217 (2018),pp. 3977-3992
    [122]
    Wu, H.H., Bellmunt, E., Scheib, J.L. et al. Glial precursors clear sensory neuron corpses during development via Jedi-1, an engulfment receptor Nat. Neurosci., 12 (2009),pp. 1534-1541
    [123]
    Xie, X., Auld, V.J. Development, 138 (2011),pp. 3813-3822
    [124]
    Xiong, X., Collins, C.A. A conditioning lesion protects axons from degeneration via the Wallenda/DLK MAP kinase signaling cascade J. Neurosci., 32 (2012),pp. 610-615
    [125]
    Xiong, X., Hao, Y., Sun, K. et al. The Highwire ubiquitin ligase promotes axonal degeneration by tuning levels of Nmnat protein PLoS Biol., 10 (2012),p. e1001440
    [126]
    Xiong, X., Wang, X., Ewanek, R. et al. Protein turnover of the Wallenda/DLK kinase regulates a retrograde response to axonal injury J. Cell Biol., 191 (2010),pp. 211-223
    [127]
    Xiong, Y., Yu, J. Front. Neurol., 9 (2018),p. 228
    [128]
    Yang, H., Chen, Y.Z., Zhang, Y. et al. A lysine-rich motif in the phosphatidylserine receptor PSR-1 mediates recognition and removal of apoptotic cells Nat. Commun., 6 (2015),p. 5717
    [129]
    Yang, J., Wu, Z., Renier, N. et al. Pathological axonal death through a MAPK cascade that triggers a local energy deficit Cell, 160 (2015),pp. 161-176
    [130]
    Yin, T.C., Voorhees, J.R., Genova, R.M. et al. Acute axonal degeneration drives development of cognitive, motor, and visual deficits after blast-mediated traumatic brain injury in mice eNeuro, 3 (2016)
    [131]
    Yu, F., Schuldiner, O. Curr. Opin. Neurobiol., 27 (2014),pp. 192-198
    [132]
    Yuva-Aydemir, Y., Almeida, S., Gao, F.B. Trends Neurosci., 41 (2018),pp. 457-469
    [133]
    Zargarian, S., Shlomovitz, I., Erlich, Z. et al. Phosphatidylserine externalization, "necroptotic bodies" release, and phagocytosis during necroptosis PLoS Biol., 15 (2017),p. e2002711
    [134]
    Zhai, R.G., Cao, Y., Hiesinger, P.R. et al. PLoS Biol., 4 (2006),p. e416
    [135]
    Zhu, X., Libby, R.T., de Vries, W.N. et al. Mutations in a P-type ATPase gene cause axonal degeneration PLoS Genet., 8 (2012),p. e1002853
    [136]
    Zhu, Y., Zhang, L., Sasaki, Y. et al. Protection of mouse retinal ganglion cell axons and soma from glaucomatous and ischemic injury by cytoplasmic overexpression of Nmnat1 Investig. Ophthalmol. Vis. Sci., 54 (2013),pp. 25-36
    [137]
    Ziegenfuss, J.S., Biswas, R., Avery, M.A. et al. Draper-dependent glial phagocytic activity is mediated by Src and Syk family kinase signalling Nature, 453 (2008),pp. 935-939
    [138]
    Ziegenfuss, J.S., Doherty, J., Freeman, M.R. Distinct molecular pathways mediate glial activation and engulfment of axonal debris after axotomy Nat. Neurosci., 15 (2012),pp. 979-987
    [139]
    Ziogas, N.K., Koliatsos, V.E. Primary traumatic axonopathy in mice subjected to impact acceleration: a reappraisal of pathology and mechanisms with high-resolution anatomical methods J. Neurosci., 38 (2018),pp. 4031-4047
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (128) PDF downloads (3) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return