5.9
CiteScore
5.9
Impact Factor
Volume 46 Issue 4
Apr.  2019
Turn off MathJax
Article Contents

Human mitochondrial DNA diseases and Drosophila models

doi: 10.1016/j.jgg.2019.03.009
More Information
  • Corresponding author: E-mail address: zhe.chen@nih.gov (Zhe Chen); E-mail address: hong.xu@nih.gov (Hong Xu)
  • Received Date: 2018-11-19
  • Accepted Date: 2019-03-25
  • Rev Recd Date: 2019-03-05
  • Available Online: 2019-04-23
  • Publish Date: 2019-04-20
  • Mutations that disrupt the mitochondrial genome cause a number of human diseases whose phenotypic presentation varies widely among tissues and individuals. This variability owes in part to the unconventional genetics of mitochondrial DNA (mtDNA), which includes polyploidy, maternal inheritance and dependence on nuclear-encoded factors. The recent development of genetic tools for manipulating mitochondrial genome in Drosophila melanogaster renders this powerful model organism an attractive alternative to mammalian systems for understanding mtDNA-related diseases. In this review, we summarize mtDNA genetics and human mtDNA-related diseases. We highlight existing Drosophila models of mtDNA mutations and discuss their potential use in advancing our knowledge of mitochondrial biology and in modeling human mitochondrial disorders. We also discuss the potential and present challenges of gene therapy for the future treatment of mtDNA diseases.
  • loading
  • [1]
    Alam, T.I., Kanki, T., Muta, T. et al. Human mitochondrial DNA is packaged with TFAM Nucleic Acids Res., 31 (2003),pp. 1640-1645
    [2]
    Alexeyev, M., Shokolenko, I., Wilson, G. et al. The maintenance of mitochondrial DNA integrity–critical analysis and update Cold Spring Harb. Perspect. Biol., 5 (2013)
    [3]
    Antonicka, H., Mattman, A., Carlson, C.G. et al. Am. J. Hum. Genet., 72 (2003),pp. 101-114
    [4]
    Bacman, S.R., Williams, S.L., Duan, D. et al. Manipulation of mtDNA heteroplasmy in all striated muscles of newborn mice by AAV9-mediated delivery of a mitochondria-targeted restriction endonuclease Gene Ther., 19 (2012),pp. 1101-1106
    [5]
    Bacman, S.R., Williams, S.L., Pinto, M. et al. Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs Nat. Med., 19 (2013),pp. 1111-1113
    [6]
    Bayona-Bafaluy, M.P., Blits, B., Battersby, B.J. et al. Rapid directional shift of mitochondrial DNA heteroplasmy in animal tissues by a mitochondrially targeted restriction endonuclease Proc. Natl. Acad. Sci. U. S. A., 102 (2005),pp. 14392-14397
    [7]
    Besse, A., Wu, P., Bruni, F. et al. The GABA transaminase, ABAT, is essential for mitochondrial nucleoside metabolism Cell Metabol., 21 (2015),pp. 417-427
    [8]
    Bier, E. Nat. Rev. Genet., 6 (2005),pp. 9-23
    [9]
    Bogenhagen, D., Clayton, D.A. Mouse L cell mitochondrial DNA molecules are selected randomly for replication throughout the cell cycle Cell, 11 (1977),pp. 719-727
    [10]
    Bonnen, P.E., Yarham, J.W., Besse, A. et al. Am. J. Hum. Genet., 93 (2013),pp. 471-481
    [11]
    Burman, J.L., Itsara, L.S., Kayser, E.B. et al. Dis. Model Mech., 7 (2014),pp. 1165-1174
    [12]
    Campos, Y., Martin, M.A., Rubio, J.C. et al. Neurology, 49 (1997),pp. 595-597
    [13]
    Carelli, V., d'Adamo, P., Valentino, M.L. et al. Parsing the differences in affected with LHON: genetic versus environmental triggers of disease conversion Brain, 139 (2016),p. e17
    [14]
    Carelli, V., Maresca, A., Caporali, L. et al. Mitochondria: biogenesis and mitophagy balance in segregation and clonal expansion of mitochondrial DNA mutations Int. J. Biochem. Cell Biol., 63 (2015),pp. 21-24
    [15]
    Carrodeguas, J.A., Kobayashi, R., Lim, S.E. et al. Mol. Cell. Biol., 19 (1999),pp. 4039-4046
    [16]
    Carrodeguas, J.A., Theis, K., Bogenhagen, D.F. et al. Crystal structure and deletion analysis show that the accessory subunit of mammalian DNA polymerase gamma, Pol gamma B, functions as a homodimer Mol. Cell, 7 (2001),pp. 43-54
    [17]
    Celotto, A.M., Chiu, W.K., Van Voorhies, W. et al. PLoS One, 6 (2011),p. e25823
    [18]
    Celotto, A.M., Frank, A.C., McGrath, S.W. et al. J. Neurosci., 26 (2006),pp. 810-820
    [19]
    Chang, D.D., Clayton, D.A. Precise identification of individual promoters for transcription of each strand of human mitochondrial DNA Cell, 36 (1984),pp. 635-643
    [20]
    Chen, Z., Qi, Y., French, S. et al. Mol. Biol. Cell, 26 (2015),pp. 674-684
    [21]
    Chinnery, P.F., Taylor, D.J., Manners, D. et al. Neurology, 56 (2001),pp. 1101-1104
    [22]
    Cho, J., Hur, J.H., Graniel, J. et al. PLoS One, 7 (2012),p. e50644
    [23]
    Clayton, D.A. Replication of animal mitochondrial DNA Cell, 28 (1982),pp. 693-705
    [24]
    Corral-Debrinski, M., Horton, T., Lott, M.T. et al. Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age Nat. Genet., 2 (1992),pp. 324-329
    [25]
    Cortopassi, G.A., Arnheim, N. Detection of a specific mitochondrial DNA deletion in tissues of older humans Nucleic Acids Res., 18 (1990),pp. 6927-6933
    [26]
    Cummins, J.M., Jequier, A.M., Kan, R. Molecular biology of human male infertility: links with aging, mitochondrial genetics, and oxidative stress? Mol. Reprod. Dev., 37 (1994),pp. 345-362
    [27]
    Di Fonzo, A., Ronchi, D., Lodi, T. et al. The mitochondrial disulfide relay system protein GFER is mutated in autosomal-recessive myopathy with cataract and combined respiratory-chain deficiency Am. J. Hum. Genet., 84 (2009),pp. 594-604
    [28]
    DiMauro, S., Hirano, M. Neurological diseases due to mitochondrial DNA mutations: concepts and problems in pathogenesis Int. J. Neurol., 25–26 (1991),pp. 118-129
    [29]
    DiMauro, S., Schon, E.A. Mitochondrial respiratory-chain diseases. N. Engl J. Med., 348 (2003),pp. 2656-2668
    [30]
    El-Hattab, A.W., Scaglia, F. Mitochondrial DNA depletion syndromes: review and updates of genetic basis, manifestations, and therapeutic options Neurotherapeutics, 10 (2013),pp. 186-198
    [31]
    Elpeleg, O., Miller, C., Hershkovitz, E. et al. Deficiency of the ADP-forming succinyl-CoA synthase activity is associated with encephalomyopathy and mitochondrial DNA depletion Am. J. Hum. Genet., 76 (2005),pp. 1081-1086
    [32]
    Elson, J.L., Samuels, D.C., Turnbull, D.M. et al. Random intracellular drift explains the clonal expansion of mitochondrial DNA mutations with age Am. J. Hum. Genet., 68 (2001),pp. 802-806
    [33]
    Falkenberg, M., Gaspari, M., Rantanen, A. et al. Mitochondrial transcription factors B1 and B2 activate transcription of human mtDNA Nat. Genet., 31 (2002),pp. 289-294
    [34]
    Fogle, K.J., Hertzler, J.I., Shon, J.H. et al. The ATP-sensitive K channel is seizure protective and required for effective dietary therapy in a model of mitochondrial encephalomyopathy J. Neurogenet., 30 (2016),pp. 247-258
    [35]
    Folgero, T., Bertheussen, K., Lindal, S. et al. Mitochondrial disease and reduced sperm motility Hum. Reprod., 8 (1993),pp. 1863-1868
    [36]
    Fox, T.D., Sanford, J.C., McMullin, T.W. Plasmids can stably transform yeast mitochondria lacking endogenous mtDNA Proc. Natl. Acad. Sci. U. S. A., 85 (1988),pp. 7288-7292
    [37]
    Frank, S.A., Hurst, L.D. Mitochondria and male disease Nature, 383 (1996),p. 224
    [38]
    Fratter, C., Raman, P., Alston, C.L. et al. RRM2B mutations are frequent in familial PEO with multiple mtDNA deletions Neurology, 76 (2011),pp. 2032-2034
    [39]
    Fryer, A., Appleton, R., Sweeney, M.G. et al. Mitochondrial DNA 8993 (NARP) mutation presenting with a heterogeneous phenotype including 'cerebral palsy' Arch. Dis. Child., 71 (1994),pp. 419-422
    [40]
    Gammage, P.A., Moraes, C.T., Minczuk, M. Mitochondrial genome engineering: the revolution may not be CRISPR-Ized Trends Genet., 34 (2018),pp. 101-110
    [41]
    Gammage, P.A., Rorbach, J., Vincent, A.I. et al. Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations EMBO Mol. Med., 6 (2014),pp. 458-466
    [42]
    Garesse, R., Kaguni, L.S. IUBMB Life, 57 (2005),pp. 555-561
    [43]
    Ghezzi, D., Sevrioukova, I., Invernizzi, F. et al. Severe X-linked mitochondrial encephalomyopathy associated with a mutation in apoptosis-inducing factor Am. J. Hum. Genet., 86 (2010),pp. 639-649
    [44]
    Gorman, G.S., Schaefer, A.M., Ng, Y. et al. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease Ann. Neurol., 77 (2015),pp. 753-759
    [45]
    Goswami, S., Dhar, G., Mukherjee, S. et al. Proc. Natl. Acad. Sci. U. S. A., 103 (2006),pp. 8354-8359
    [46]
    Goto, Y., Nonaka, I., Horai, S. Nature, 348 (1990),pp. 651-653
    [47]
    Guy, J., Qi, X., Pallotti, F. et al. Rescue of a mitochondrial deficiency causing leber hereditary optic neuropathy Ann. Neurol., 52 (2002),pp. 534-542
    [48]
    Hakkaart, G.A., Dassa, E.P., Jacobs, H.T. et al. Allotopic expression of a mitochondrial alternative oxidase confers cyanide resistance to human cell respiration EMBO Rep., 7 (2006),pp. 341-345
    [49]
    Hashiguchi, K., Zhang-Akiyama, Q.M. Establishment of human cell lines lacking mitochondrial DNA Methods Mol. Biol., 554 (2009),pp. 383-391
    [50]
    Hill, J.H., Chen, Z., Xu, H. Selective propagation of functional mitochondrial DNA during oogenesis restricts the transmission of a deleterious mitochondrial variant Nat. Genet., 46 (2014),pp. 389-392
    [51]
    Hirano, M.
    [52]
    Holt, I.J., Harding, A.E., Morgan-Hughes, J.A. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies Nature, 331 (1988),pp. 717-719
    [53]
    Holt, I.J., Harding, A.E., Petty, R.K. et al. A new mitochondrial disease associated with mitochondrial DNA heteroplasmy Am. J. Hum. Genet., 46 (1990),pp. 428-433
    [54]
    Holt, I.J., Lorimer, H.E., Jacobs, H.T. Coupled leading- and lagging-strand synthesis of mammalian mitochondrial DNA Cell, 100 (2000),pp. 515-524
    [55]
    Holyoake, A.J., McHugh, P., Wu, M. et al. High incidence of single nucleotide substitutions in the mitochondrial genome is associated with poor semen parameters in men Int. J. Androl., 24 (2001),pp. 175-182
    [56]
    Hudson, G., Amati-Bonneau, P., Blakely, E.L. et al. Brain, 131 (2008),pp. 329-337
    [57]
    Hudson, G., Chinnery, P.F. Mitochondrial DNA polymerase-gamma and human disease Hum. Mol. Genet., 15 (2006),pp. R244-R252
    [58]
    Johnston, S.A., Anziano, P.Q., Shark, K. et al. Mitochondrial transformation in yeast by bombardment with microprojectiles Science, 240 (1988),pp. 1538-1541
    [59]
    Kamenski, P., Kolesnikova, O., Jubenot, V. et al. Evidence for an adaptation mechanism of mitochondrial translation via tRNA import from the cytosol Mol. Cell, 26 (2007),pp. 625-637
    [60]
    Karicheva, O.Z., Kolesnikova, O.A., Schirtz, T. et al. Nucleic Acids Res., 39 (2011),pp. 8173-8186
    [61]
    Kasapkara, C.S., Tumer, L., Kucukcongar, A. et al. DGUOK-related mitochondrial DNA depletion syndrome in a child with an early diagnosis of glycogen storage disease J. Pediatr. Gastroenterol. Nutr., 57 (2013),pp. e28-e29
    [62]
    Kaukonen, J., Juselius, J.K., Tiranti, V. et al. Role of adenine nucleotide translocator 1 in mtDNA maintenance Science, 289 (2000),pp. 782-785
    [63]
    Kirches, E. LHON: mitochondrial mutations and more Curr. Genomics, 12 (2011),pp. 44-54
    [64]
    Koehler, C.M., Lindberg, G.L., Brown, D.R. et al. Replacement of bovine mitochondrial DNA by a sequence variant within one generation Genetics, 129 (1991),pp. 247-255
    [65]
    Korhonen, J.A., Pham, X.H., Pellegrini, M. et al. EMBO J., 23 (2004),pp. 2423-2429
    [66]
    Kornblum, C., Nicholls, T.J., Haack, T.B. et al. Loss-of-function mutations in MGME1 impair mtDNA replication and cause multisystemic mitochondrial disease Nat. Genet., 45 (2013),pp. 214-219
    [67]
    Krishnan, K.J., Reeve, A.K., Samuels, D.C. et al. What causes mitochondrial DNA deletions in human cells? Nat. Genet., 40 (2008),pp. 275-279
    [68]
    Kukat, C., Wurm, C.A., Spahr, H. et al. Super-resolution microscopy reveals that mammalian mitochondrial nucleoids have a uniform size and frequently contain a single copy of mtDNA Proc. Natl. Acad. Sci. U. S. A., 108 (2011),pp. 13534-13539
    [69]
    Legros, F., Malka, F., Frachon, P. et al. Organization and dynamics of human mitochondrial DNA J. Cell Sci., 117 (2004),pp. 2653-2662
    [70]
    Lightowlers, R.N. Mitochondrial transformation: time for concerted action EMBO Rep., 12 (2011),pp. 480-481
    [71]
    Lin, C.S., Sharpley, M.S., Fan, W. et al. Mouse mtDNA mutant model of Leber hereditary optic neuropathy Proc. Natl. Acad. Sci. U. S. A., 109 (2012),pp. 20065-20070
    [72]
    Longley, M.J., Clark, S., Yu Wai Man, C. et al. Am. J. Hum. Genet., 78 (2006),pp. 1026-1034
    [73]
    Lott, M.T., Leipzig, J.N., Derbeneva, O. et al. mtDNA variation and analysis using Mitomap and Mitomaster Curr. Protoc. Bioinformatics, 44 (2013)
    [74]
    Luo, S., Valencia, C.A., Zhang, J. et al. Biparental inheritance of mitochondrial DNA in humans Proc. Natl. Acad. Sci. U. S. A., 115 (2018),pp. 13039-13044
    [75]
    Ma, H., O'Farrell, P.H. Selections that isolate recombinant mitochondrial genomes in animals eLife, 4 (2015)
    [76]
    Ma, H., Xu, H., O'Farrell, P.H. Nat. Genet., 46 (2014),pp. 393-397
    [77]
    Manfredi, G., Fu, J., Ojaimi, J. et al. Nat. Genet., 30 (2002),pp. 394-399
    [78]
    Marchington, D.R., Barlow, D., Poulton, J. Transmitochondrial mice carrying resistance to chloramphenicol on mitochondrial DNA: developing the first mouse model of mitochondrial DNA disease Nat. Med., 5 (1999),pp. 957-960
    [79]
    Matsuura, E.T., Chigusa, S.I., Niki, Y. Genetics, 122 (1989),pp. 663-667
    [80]
    Mayr, J.A., Haack, T.B., Graf, E. et al. Lack of the mitochondrial protein acylglycerol kinase causes Sengers syndrome Am. J. Hum. Genet., 90 (2012),pp. 314-320
    [81]
    Montoya, J., Christianson, T., Levens, D. et al. Identification of initiation sites for heavy-strand and light-strand transcription in human mitochondrial DNA Proc. Natl. Acad. Sci. U. S. A., 79 (1982),pp. 7195-7199
    [82]
    Mootha, V.K., Lindgren, C.M., Eriksson, K.F. et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes Nat. Genet., 34 (2003),pp. 267-273
    [83]
    Moraes, C.T., Ciacci, F., Silvestri, G. et al. Atypical clinical presentations associated with the MELAS mutation at position 3243 of human mitochondrial DNA Neuromuscul. Disord., 3 (1993),pp. 43-50
    [84]
    Moraes, C.T., DiMauro, S., Zeviani, M. et al. Mitochondrial DNA deletions in progressive external ophthalmoplegia and Kearns-Sayre syndrome N. Engl. J. Med., 320 (1989),pp. 1293-1299
    [85]
    Moraes, C.T., Sciacco, M., Ricci, E. et al. Phenotype-genotype correlations in skeletal muscle of patients with mtDNA deletions Muscle Nerve Suppl., 3 (1995),pp. S150-S153
    [86]
    Muller, H.J. The relation of recombination to mutational advance Mutat. Res., 106 (1964),pp. 2-9
    [87]
    Nunnari, J., Suomalainen, A. Mitochondria: in sickness and in health Cell, 148 (2012),pp. 1145-1159
    [88]
    Ojala, D., Montoya, J., Attardi, G. tRNA punctuation model of RNA processing in human mitochondria Nature, 290 (1981),pp. 470-474
    [89]
    Oskoui, M., Davidzon, G., Pascual, J. et al. Clinical spectrum of mitochondrial DNA depletion due to mutations in the thymidine kinase 2 gene Arch. Neurol., 63 (2006),pp. 1122-1126
    [90]
    Ostergaard, E., Christensen, E., Kristensen, E. et al. Deficiency of the alpha subunit of succinate-coenzyme A ligase causes fatal infantile lactic acidosis with mitochondrial DNA depletion Am. J. Hum. Genet., 81 (2007),pp. 383-387
    [91]
    Pandey, U.B., Nichols, C.D. Pharmacol. Rev., 63 (2011),pp. 411-436
    [92]
    Patananan, A.N., Wu, T.H., Chiou, P.Y. et al. Modifying the mitochondrial genome Cell Metabol., 23 (2016),pp. 785-796
    [93]
    Patel, M.R., Miriyala, G.K., Littleton, A.J. et al. eLife, 5 (2016),p. 1144
    [94]
    Pavlakis, S.G., Phillips, P.C., DiMauro, S. et al. Mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes: a distinctive clinical syndrome Ann. Neurol., 16 (1984),pp. 481-488
    [95]
    Perales-Clemente, E., Fernandez-Silva, P., Acin-Perez, R. et al. Allotopic expression of mitochondrial-encoded genes in mammals: achieved goal, undemonstrated mechanism or impossible task? Nucleic Acids Res., 39 (2011),pp. 225-234
    [96]
    Petersen, K.F., Befroy, D., Dufour, S. et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance Science, 300 (2003),pp. 1140-1142
    [97]
    Pfeffer, G., Majamaa, K., Turnbull, D.M. et al. Treatment for mitochondrial disorders Cochrane Database Syst. Rev. (2012)
    [98]
    Phillips, A.F., Millet, A.R., Tigano, M. et al. Single-molecule analysis of mtDNA replication ucovers the basis of the common deletion Mol. Cell, 65 (2017),pp. 527-538
    [99]
    Rajender, S., Rahul, P., Mahdi, A.A. Mitochondria, spermatogenesis and male infertility Mitochondrion, 10 (2010),pp. 419-428
    [100]
    Reddy, P., Ocampo, A., Suzuki, K. et al. Selective elimination of mitochondrial mutations in the germline by genome editing Cell, 161 (2015),pp. 459-469
    [101]
    Remacle, C., Cardol, P., Coosemans, N. et al. Proc. Natl. Acad. Sci. U. S. A., 103 (2006),pp. 4771-4776
    [102]
    Reyes, A., Melchionda, L., Nasca, A. et al. Am. J. Hum. Genet., 97 (2015),pp. 186-193
    [103]
    Ronchi, D., Di Fonzo, A., Lin, W. et al. Am. J. Hum. Genet., 92 (2013),pp. 293-300
    [104]
    Ropp, P.A., Copeland, W.C. Cloning and characterization of the human mitochondrial DNA polymerase, DNA polymerase gamma Genomics, 36 (1996),pp. 449-458
    [105]
    Rouzier, C., Bannwarth, S., Chaussenot, A. et al. Brain, 135 (2012),pp. 23-34
    [106]
    Sadun, A.A., La Morgia, C., Carelli, V. Leber's hereditary optic neuropathy Curr. Treat. Options Neurol., 13 (2011),pp. 109-117
    [107]
    Samuels, D.C., Schon, E.A., Chinnery, P.F. Two direct repeats cause most human mtDNA deletions Trends Genet., 20 (2004),pp. 393-398
    [108]
    Santorelli, F.M., Tanji, K., Kulikova, R. et al. Biochem. Biophys. Res. Commun., 238 (1997),pp. 326-328
    [109]
    Sato, M., Sato, K. Maternal inheritance of mitochondrial DNA by diverse mechanisms to eliminate paternal mitochondrial DNA Biochim. Biophys. Acta, 1833 (2013),pp. 1979-1984
    [110]
    Schaefer, A.M., McFarland, R., Blakely, E.L. et al. Prevalence of mitochondrial DNA disease in adults Ann. Neurol., 63 (2008),pp. 35-39
    [111]
    Schaefer, A.M., Taylor, R.W., Turnbull, D.M. et al. The epidemiology of mitochondrial disorders–past, present and future Biochim. Biophys. Acta, 1659 (2004),pp. 115-120
    [112]
    Schekman, R. Proc. Natl. Acad. Sci. U. S. A., 107 (2010),p. 9476
    [113]
    Schneider, A. Mitochondrial tRNA import and its consequences for mitochondrial translation Annu. Rev. Biochem., 80 (2011),pp. 1033-1053
    [114]
    Schon, E.A., Rizzuto, R., Moraes, C.T. et al. A direct repeat is a hotspot for large-scale deletion of human mitochondrial DNA Science, 244 (1989),pp. 346-349
    [115]
    Schwartz, M., Vissing, J. Paternal inheritance of mitochondrial DNA N. Engl. J. Med., 347 (2002),pp. 576-580
    [116]
    Sen, A., Cox, R.T. Curr. Top. Dev. Biol., 121 (2017),pp. 1-27
    [117]
    Shoffner, J.M., Lott, M.T., Lezza, A.M. et al. Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNA(Lys) mutation Cell, 61 (1990),pp. 931-937
    [118]
    Shoffner, J.M., Lott, M.T., Voljavec, A.S. et al. Spontaneous Kearns-Sayre/chronic external ophthalmoplegia plus syndrome associated with a mitochondrial DNA deletion: a slip-replication model and metabolic therapy Proc. Natl. Acad. Sci. U. S. A., 86 (1989),pp. 7952-7956
    [119]
    Silvestri, G., Ciafaloni, E., Santorelli, F.M. et al. Neurology, 43 (1993),pp. 1200-1206
    [120]
    Spelbrink, J.N., Li, F.Y., Tiranti, V. et al. Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria Nat. Genet., 28 (2001),pp. 223-231
    [121]
    Spinazzola, A., Viscomi, C., Fernandez-Vizarra, E. et al. Nat. Genet., 38 (2006),pp. 570-575
    [122]
    Stewart, J.B., Chinnery, P.F. The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease Nat. Rev. Genet., 16 (2015),pp. 530-542
    [123]
    Stewart, J.B., Freyer, C., Elson, J.L. et al. Strong purifying selection in transmission of mammalian mitochondrial DNA PLoS Biol., 6 (2008),p. e10
    [124]
    Taanman, J.W. The mitochondrial genome: structure, transcription, translation and replication Biochim. Biophys. Acta, 1410 (1999),pp. 103-123
    [125]
    Tait, S.W., Green, D.R. Mitochondria and cell signalling J. Cell Sci., 125 (2012),pp. 807-815
    [126]
    Taylor, R.W., Chinnery, P.F., Haldane, F. et al. MELAS associated with a mutation in the valine transfer RNA gene of mitochondrial DNA Ann. Neurol., 40 (1996),pp. 459-462
    [127]
    Taylor, R.W., Turnbull, D.M. Mitochondrial DNA mutations in human disease Nat. Rev. Genet., 6 (2005),pp. 389-402
    [128]
    Thyagarajan, D., Shanske, S., Vazquez-Memije, M. et al. Ann. Neurol., 38 (1995),pp. 468-472
    [129]
    Toivonen, J.M., O'Dell, K.M., Petit, N. et al. Genetics, 159 (2001),pp. 241-254
    [130]
    Towheed, A., Markantone, D.M., Crain, A.T. et al. Neurobiol. Dis., 69 (2014),pp. 15-22
    [131]
    Triepels, R.H., Van Den Heuvel, L.P., Trijbels, J.M. et al. Respiratory chain complex I deficiency Am. J. Med. Genet., 106 (2001),pp. 37-45
    [132]
    Tuppen, H.A., Blakely, E.L., Turnbull, D.M. et al. Mitochondrial DNA mutations and human disease Biochim. Biophys. Acta, 1797 (2010),pp. 113-128
    [133]
    van den Ouweland, J.M., Lemkes, H.H., Trembath, R.C. et al. Diabetes, 43 (1994),pp. 746-751
    [134]
    Wallace, D.C. Mitochondrial diseases in man and mouse Science, 283 (1999),pp. 1482-1488
    [135]
    Wallace, D.C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine Annu. Rev. Genet., 39 (2005),pp. 359-407
    [136]
    Wallace, D.C., Chalkia, D. Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease Cold Spring Harb. Perspect. Biol., 5 (2013)
    [137]
    Wallace, D.C., Singh, G., Lott, M.T. et al. Mitochondrial DNA mutation associated with Leber's hereditary optic neuropathy Science, 242 (1988),pp. 1427-1430
    [138]
    Wang, G., Chen, H.W., Oktay, Y. et al. PNPASE regulates RNA import into mitochondria Cell, 142 (2010),pp. 456-467
    [139]
    Wang, G., Shimada, E., Zhang, J. et al. Correcting human mitochondrial mutations with targeted RNA import Proc. Natl. Acad. Sci. U. S. A., 109 (2012),pp. 4840-4845
    [140]
    Wilson, F.H., Hariri, A., Farhi, A. et al. A cluster of metabolic defects caused by mutation in a mitochondrial tRNA Science, 306 (2004),pp. 1190-1194
    [141]
    Xu, H., DeLuca, S.Z., O'Farrell, P.H. Manipulating the metazoan mitochondrial genome with targeted restriction enzymes Science, 321 (2008),pp. 575-577
    [142]
    Yagi, T., Seo, B.B., Di Bernardo, S. et al. NADH dehydrogenases: from basic science to biomedicine J. Bioenerg. Biomembr., 33 (2001),pp. 233-242
    [143]
    Yamada, Y., Akita, H., Kamiya, H. et al. MITO-Porter: a liposome-based carrier system for delivery of macromolecules into mitochondria via membrane fusion Biochim. Biophys. Acta, 1778 (2008),pp. 423-432
    [144]
    Yoon, Y.G., Koob, M.D. Transformation of isolated mammalian mitochondria by bacterial conjugation Nucleic Acids Res., 33 (2005),p. e139
    [145]
    Young, M.J., Copeland, W.C. Human mitochondrial DNA replication machinery and disease Curr. Opin. Genet. Dev., 38 (2016),pp. 52-62
    [146]
    Yu-Wai-Man, P., Turnbull, D.M., Chinnery, P.F. Leber hereditary optic neuropathy J. Med. Genet., 39 (2002),pp. 162-169
    [147]
    Zhang, F., Qi, Y., Zhou, K. et al. The cAMP phosphodiesterase Prune localizes to the mitochondrial matrix and promotes mtDNA replication by stabilizing TFAM EMBO Rep., 16 (2015),pp. 520-527
    [148]
    Zhang, Y., Wang, Z.H., Liu, Y. et al. PINK1 inhibits local protein synthesis to limit transmission of deleterious mitochondrial DNA mutations Mol. Cell, 73 (2019),pp. 1127-1137
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (147) PDF downloads (5) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return