5.9
CiteScore
5.9
Impact Factor
Volume 46 Issue 4
Apr.  2019
Turn off MathJax
Article Contents

HDAC6 regulates lipid droplet turnover in response to nutrient deprivation via p62-mediated selective autophagy

doi: 10.1016/j.jgg.2019.03.008
More Information
  • Corresponding author: E-mail address: rjiao@sun5.ibp.ac.cn (Renjie Jiao)
  • Received Date: 2018-06-11
  • Accepted Date: 2019-03-12
  • Rev Recd Date: 2019-03-03
  • Available Online: 2019-04-21
  • Publish Date: 2019-04-20
  • Autophagy has been evolved as one of the adaptive cellular processes in response to stresses such as nutrient deprivation. Various cellular cargos such as damaged organelles and protein aggregates can be selectively degraded through autophagy. Recently, the lipid storage organelle, lipid droplet (LD), has been reported to be the cargo of starvation-induced autophagy. However, it remains largely unknown how the autophagy machinery recognizes the LDs and whether it can selectively degrade LDs. In this study, we show that Drosophila histone deacetylase 6 (dHDAC6), a key regulator of selective autophagy, is required for the LD turnover in the hepatocyte-like oenocytes in response to starvation. HDAC6 regulates LD turnover via p62/SQSTM1 (sequestosome 1)-mediated aggresome formation, suggesting that the selective autophagy machinery is required for LD recognition and degradation. Furthermore, our results show that the loss of dHDAC6 causes steatosis in response to starvation. Our findings suggest that there is a potential link between selective autophagy and susceptible predisposition to lipid metabolism associated diseases in stress conditions.
  • These authors contributed equally to this work.
  • loading
  • [1]
    Bi, J., Xiang, Y., Chen, H. et al. J. Cell Sci., 125 (2012),pp. 3568-3577
    [2]
    Bjorkoy, G., Lamark, T., Brech, A. et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death J. Cell Biol., 171 (2005),pp. 603-614
    [3]
    Boyault, C., Gilquin, B., Zhang, Y. et al. HDAC6-p97/VCP controlled polyubiquitin chain turnover EMBO J., 25 (2006),pp. 3357-3366
    [4]
    Boyault, C., Zhang, Y., Fritah, S. et al. HDAC6 controls major cell response pathways to cytotoxic accumulation of protein aggregates Genes Dev., 21 (2007),pp. 2172-2181
    [5]
    Cha-Molstad, H., Yu, J.E., Feng, Z. et al. p62/SQSTM1/Sequestosome-1 is an N-recognin of the N-end rule pathway which modulates autophagosome biogenesis Nat. Commun., 8 (2017),p. 102
    [6]
    Chatterjee, D., Katewa, S.D., Qi, Y. et al. Proc. Natl. Acad. Sci. U. S. A., 111 (2014),pp. 17959-17964
    [7]
    Cingolani, F., Czaja, M.J. Regulation and functions of autophagic lipolysis Trends Endocrinol. Metabol., 27 (2016),pp. 696-705
    [8]
    Cinnamon, E., Makki, R., Sawala, A. et al. PLoS Genet., 12 (2016)
    [9]
    Dikic, I., Johansen, T., Kirkin, V. Selective autophagy in cancer development and therapy Cancer Res., 70 (2010),pp. 3431-3434
    [10]
    Du, G., Jiao, R. To prevent neurodegeneration: HDAC6 uses different strategies for different challenges Commun. Integr. Biol., 4 (2011),pp. 139-142
    [11]
    Du, G., Liu, X., Chen, X. et al. Mol. Biol. Cell, 21 (2010),pp. 2128-2137
    [12]
    Fusco, C., Micale, L., Egorov, M. et al. The E3-ubiquitin ligase TRIM50 interacts with HDAC6 and p62, and promotes the sequestration and clearance of ubiquitinated proteins into the aggresome PLoS One, 7 (2012)
    [13]
    Green, D.R., Levine, B. To be or not to be? How selective autophagy and cell death govern cell fate Cell, 157 (2014),pp. 65-75
    [14]
    Gutierrez, E., Wiggins, D., Fielding, B. et al. Nature, 445 (2007),pp. 275-280
    [15]
    Haggarty, S.J., Koeller, K.M., Wong, J.C. et al. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation Proc. Natl. Acad. Sci. U. S. A., 100 (2003),pp. 4389-4394
    [16]
    Hubbert, C., Guardiola, A., Shao, R. et al. HDAC6 is a microtubule-associated deacetylase Nature, 417 (2002),pp. 455-458
    [17]
    Iwata, A., Riley, B.E., Johnston, J.A. et al. HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin J. Biol. Chem., 280 (2005),pp. 40282-40292
    [18]
    Kaur, J., Debnath, J. Autophagy at the crossroads of catabolism and anabolism Nat. Rev. Mol. Cell Biol., 16 (2015),pp. 461-472
    [19]
    Kaushik, S., Cuervo, A.M. Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis Nat. Cell Biol., 17 (2015),pp. 759-770
    [20]
    Kaushik, S., Cuervo, A.M. AMPK-dependent phosphorylation of lipid droplet protein PLIN2 triggers its degradation by CMA Autophagy, 12 (2016),pp. 432-438
    [21]
    Kawaguchi, Y., Kovacs, J.J., McLaurin, A. et al. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress Cell, 115 (2003),pp. 727-738
    [22]
    Khaminets, A., Heinrich, T., Mari, M. et al. Regulation of endoplasmic reticulum turnover by selective autophagy Nature, 522 (2015),pp. 354-358
    [23]
    Kirkin, V., McEwan, D.G., Novak, I. et al. A role for ubiquitin in selective autophagy Mol. Cell, 34 (2009),pp. 259-269
    [24]
    Kunte, A.S., Matthews, K.A., Rawson, R.B. Cell Metabol., 3 (2006),pp. 439-448
    [25]
    Lapierre, L.R., Silvestrini, M.J., Nunez, L. et al. Autophagy, 9 (2013),pp. 278-286
    [26]
    Lazarou, M., Sliter, D.A., Kane, L.A. et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy Nature, 524 (2015),pp. 309-314
    [27]
    Lee, J.Y., Koga, H., Kawaguchi, Y. et al. HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy EMBO J., 29 (2010),pp. 969-980
    [28]
    Lee, Y., Chou, T.F., Pittman, S.K. et al. Keap1/Cullin3 modulates p62/SQSTM1 activity via UBA domain ubiquitination Cell Rep., 19 (2017),pp. 188-202
    [29]
    Li, S., Dou, X., Ning, H. et al. Sirtuin 3 acts as a negative regulator of autophagy dictating hepatocyte susceptibility to lipotoxicity Hepatology, 66 (2017),pp. 936-952
    [30]
    Mancias, J.D., Wang, X., Gygi, S.P. et al. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy Nature, 509 (2014),pp. 105-109
    [31]
    Martinez-Lopez, N., Singh, R. Autophagy and lipid droplets in the liver Annu. Rev. Nutr., 35 (2015),pp. 215-237
    [32]
    Matsumoto, G., Wada, K., Okuno, M. et al. Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins Mol. Cell, 44 (2011),pp. 279-289
    [33]
    Matsuyama, A., Shimazu, T., Sumida, Y. et al. EMBO J., 21 (2002),pp. 6820-6831
    [34]
    Mochida, K., Oikawa, Y., Kimura, Y. et al. Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus Nature, 522 (2015),pp. 359-362
    [35]
    Oku, M., Maeda, Y., Kagohashi, Y. et al. Evidence for ESCRT- and clathrin-dependent microautophagy J. Cell Biol., 216 (2017),pp. 3263-3274
    [36]
    Orvedahl, A., , Xiao, G., Ng, A. et al. Image-based genome-wide siRNA screen identifies selective autophagy factors Nature, 480 (2011),pp. 113-117
    [37]
    Pandey, U.B., Nie, Z., Batlevi, Y. et al. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS Nature, 447 (2007),pp. 859-863
    [38]
    Parvy, J.P., Napal, L., Rubin, T. et al. PLoS Genet., 8 (2012)
    [39]
    Perry, R.J., Samuel, V.T., Petersen, K.F. et al. The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes Nature, 510 (2014),pp. 84-91
    [40]
    Rodrigues, D.A., Thota, S., Fraga, C.A. Beyond the selective inhibition of histone deacetylase 6 Mini Rev. Med. Chem., 16 (2016),pp. 1175-1184
    [41]
    Sathyanarayan, A., Mashek, M.T., Mashek, D.G. ATGL promotes autophagy/lipophagy via SIRT1 to control hepatic lipid droplet catabolism Cell Rep., 19 (2017),pp. 1-9
    [42]
    Schulze, R.J., Sathyanarayan, A., Mashek, D.G. Breaking fat: the regulation and mechanisms of lipophagy Biochim. Biophys. Acta, 1862 (2017),pp. 1178-1187
    [43]
    Singh, R., Kaushik, S., Wang, Y. et al. Autophagy regulates lipid metabolism Nature, 458 (2009),pp. 1131-1135
    [44]
    Spandl, J., Lohmann, D., Kuerschner, L. et al. Ancient ubiquitous protein 1 (AUP1) localizes to lipid droplets and binds the E2 ubiquitin conjugase G2 (Ube2g2) via its G2 binding region J. Biol. Chem., 286 (2011),pp. 5599-5606
    [45]
    Tsai, T.H., Chen, E., Li, L. et al. The constitutive lipid droplet protein PLIN2 regulates autophagy in liver Autophagy, 13 (2017),pp. 1130-1144
    [46]
    Valenzuela-Fernandez, A., Cabrero, J.R., Serrador, J.M. et al. HDAC6: a key regulator of cytoskeleton, cell migration and cell-cell interactions Trends Cell Biol., 18 (2008),pp. 291-297
    [47]
    Velazquez, A.P., Graef, M. Autophagy regulation depends on ER homeostasis controlled by lipid droplets Autophagy, 12 (2016),pp. 1409-1410
    [48]
    Xiong, Y., Zhao, K., Wu, J. et al. Proc. Natl. Acad. Sci. U. S. A., 110 (2013),pp. 4604-4609
    [49]
    Yan, J., Seibenhener, M.L., Calderilla-Barbosa, L. et al. SQSTM1/p62 interacts with HDAC6 and regulates deacetylase activity PLoS One, 8 (2013)
    [50]
    Yan, Y., Wang, H., Chen, H. et al. J. Genet. Genomics, 42 (2015),pp. 487-494
    [51]
    Yan, Y., Wang, H., Hu, M. et al. Dev. Cell, 43 (2017),pp. 99-111
    [52]
    Zhang, J., Zamani, M., Thiele, C. et al. AUP1 (ancient ubiquitous protein 1) is a key determinant of hepatic very-low-density lipoprotein assembly and secretion Arterioscler. Thromb. Vasc. Biol., 37 (2017),pp. 633-642
    [53]
    Zhang, X., Yuan, Z., Zhang, Y. et al. HDAC6 modulates cell motility by altering the acetylation level of cortactin Mol. Cell, 27 (2007),pp. 197-213
    [54]
    Zhang, Y., Yan, L., Zhou, Z. et al. Cell, 136 (2009),pp. 308-321
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (118) PDF downloads (7) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return