[1] |
Abbott, L.A., Natzle, J.E. Mech. Dev., 37 (1992),pp. 43-56
|
[2] |
Agrawal, N., Joshi, S., Kango, M. et al. Dev. Biol., 169 (1995),pp. 387-398
|
[3] |
Ali, S.N., Dayarathna, T.K., Ali, A.N. et al. Dis. Model. Mech. (2018)
|
[4] |
Anderson, C.A., Boucher, G., Lees, C.W. et al. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47 Nat. Genet., 43 (2011),pp. 246-252
|
[5] |
Aron, R., Pellegrini, P., Green, E.W. et al. Deubiquitinase usp12 functions noncatalytically to induce autophagy and confer neuroprotection in models of huntington's disease Nat. Commun., 9 (2018),p. 3191
|
[6] |
Asano, J., Sato, T., Ichinose, S. et al. Intrinsic autophagy is required for the maintenance of intestinal stem cells and for irradiation-induced intestinal regeneration Cell Rep., 20 (2017),pp. 1050-1060
|
[7] |
Bardai, F.H., Wang, L., Mutreja, Y. et al. J. Neurosci., 38 (2018),pp. 108-119
|
[8] |
Baxt, L.A., Xavier, R.J. Role of autophagy in the maintenance of intestinal homeostasis Gastroenterology, 149 (2015),pp. 553-562
|
[9] |
Beardsmore, C.S., Godfrey, S., Silverman, M. Forced expiratory flow-volume curves in infants and young children Eur. Respir. J. Suppl., 4 (1989),pp. 154S-159S
|
[10] |
Bhattacharjee, A., Hasanain, M., Kathuria, M. et al. Ormeloxifene-induced unfolded protein response contributes to autophagy-associated apoptosis via disruption of akt/mtor and activation of jnk Sci. Rep., 8 (2018),p. 2303
|
[11] |
Bilder, D., Li, M., Perrimon, N. Science, 289 (2000),pp. 113-116
|
[12] |
Bilder, D., Perrimon, N. Localization of apical epithelial determinants by the basolateral pdz protein scribble Nature, 403 (2000),pp. 676-680
|
[13] |
Bilen, J., Bonini, N.M. PLoS Genet., 3 (2007),pp. 1950-1964
|
[14] |
Billes, V., Kovacs, T., Hotzi, B. et al. J. Huntingtons Dis., 5 (2016),pp. 133-147
|
[15] |
Boland, B., Kumar, A., Lee, S. et al. Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in alzheimer's disease J. Neurosci., 28 (2008),pp. 6926-6937
|
[16] |
Boya, P., Codogno, P., Rodriguez-Muela, N. Autophagy in stem cells: repair, remodelling and metabolic reprogramming Development, 145 (2018)
|
[17] |
Brumby, A.M., Richardson, H.E. EMBO J., 22 (2003),pp. 5769-5779
|
[18] |
Buchon, N., Silverman, N., Cherry, S. Nat. Rev. Immunol., 14 (2014),pp. 796-810
|
[19] |
Butterworth, F.M., Forrest, E.C. Tissue Cell, 16 (1984),pp. 237-250
|
[20] |
Buttner, S., Broeskamp, F., Sommer, C. et al. Spermidine protects against alpha-synuclein neurotoxicity Cell Cycle, 13 (2014),pp. 3903-3908
|
[21] |
Carra, S., Boncoraglio, A., Kanon, B. et al. J. Biol. Chem., 285 (2010),pp. 37811-37822
|
[22] |
Chang, S., Bray, S.M., Li, Z. et al. Nat. Chem. Biol., 4 (2008),pp. 256-263
|
[23] |
Chen, X., He, Y., Lu, F. Autophagy in stem cell biology: a perspective on stem cell self-renewal and differentiation Stem Cells Int., 2018 (2018),p. 9131397
|
[24] |
Chu, C.T. Mechanisms of selective autophagy and mitophagy: implications for neurodegenerative diseases Neurobiol. Dis., 122 (2019),pp. 23-34
|
[25] |
Cornelissen, T., Vilain, S., Vints, K. et al. eLife, 7 (2018)
|
[26] |
Cuervo, A.M., Stefanis, L., Fredenburg, R. et al. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy Science, 305 (2004),pp. 1292-1295
|
[27] |
Cuervo, A.M., Wong, E. Chaperone-mediated autophagy: roles in disease and aging Cell Res., 24 (2014),pp. 92-104
|
[28] |
Csizmadia, T., Lorincz, P., Hegedus, K. et al. J. Cell Biol., 217 (2018),pp. 361-374
|
[29] |
de Castro, I.P., Costa, A.C., Celardo, I. et al. Cell Death Dis., 4 (2013),p. e873
|
[30] |
del Cano-Espinel, M., Acebes, J.R., Sanchez, D. et al. Lazarillo-related lipocalins confer long-term protection against type i spinocerebellar ataxia degeneration contributing to optimize selective autophagy Mol. Neurodegener, 10 (2015),p. 11
|
[31] |
Drew, L. An age-old story of dementia Nature, 559 (2018),pp. S2-S3
|
[32] |
Enomoto, M., Vaughen, J., Igaki, T. Non-autonomous overgrowth by oncogenic niche cells: cellular cooperation and competition in tumorigenesis Cancer Sci., 106 (2015),pp. 1651-1658
|
[33] |
Feany, M.B., Bender, W.W. Nature, 404 (2000),pp. 394-398
|
[34] |
Ferres-Marco, D., Gutierrez-Garcia, I., Vallejo, D.M. et al. Epigenetic silencers and notch collaborate to promote malignant tumours by rb silencing Nature, 439 (2006),pp. 430-436
|
[35] |
Fujikake, N., Shin, M., Shimizu, S. Association between autophagy and neurodegenerative diseases Front. Neurosci., 12 (2018),p. 255
|
[36] |
Fujita, N., Huang, W., Lin, T.H. et al. eLife, 6 (2017)
|
[37] |
Galluzzi, L., Bravo-San Pedro, J.M., Levine, B. et al. Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles Nat. Rev. Drug Discov., 16 (2017),pp. 487-511
|
[38] |
Gispert, S., Ricciardi, F., Kurz, A. et al. Parkinson phenotype in aged pink1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration PLoS One, 4 (2009),p. e5777
|
[39] |
Grasso, D., Garcia, M.N., Iovanna, J.L. Autophagy in pancreatic cancer Int. J. Cell Biol., 2012 (2012),p. 760498
|
[40] |
Guan, J.L., Simon, A.K., Prescott, M. et al. Autophagy in stem cells Autophagy, 9 (2013),pp. 830-849
|
[41] |
Hampe, J., Franke, A., Rosenstiel, P. et al. A genome-wide association scan of nonsynonymous snps identifies a susceptibility variant for crohn disease in atg16l1 Nat. Genet., 39 (2007),pp. 207-211
|
[42] |
Hanahan, D., Weinberg, R.A. Hallmarks of cancer: the next generation Cell, 144 (2011),pp. 646-674
|
[43] |
Hara, T., Nakamura, K., Matsui, M. et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice Nature, 441 (2006),pp. 885-889
|
[44] |
Harris, R.E., Pargett, M., Sutcliffe, C. et al. Brat promotes stem cell differentiation via control of a bistable switch that restricts BMP signaling Dev. Cell, 20 (2011),pp. 72-83
|
[45] |
Hegedus, K., Takats, S., Boda, A. et al. The ccz1-Mon1-rab7 module and rab 5 control distinct steps of autophagy Mol. Biol. Cell, 27 (2016),pp. 3132-3142
|
[46] |
Huttenhower, C., Kostic, A.D., Xavier, R.J. Inflammatory bowel disease as a model for translating the microbiome Immunity, 40 (2014),pp. 843-854
|
[47] |
Issa, A.R., Sun, J., Petitgas, C. et al. Autophagy, 14 (2018),pp. 1898-1910
|
[48] |
Jain, A., Rusten, T.E., Katheder, N. et al. J. Biol. Chem., 290 (2015),pp. 14945-14962
|
[49] |
Jiang, H., Edgar, B.A. Curr. Opin. Genet. Dev., 22 (2012),pp. 354-360
|
[50] |
Jie, X.X., Zhang, X.Y., Xu, C.J. Epithelial-to-mesenchymal transition, circulating tumor cells and cancer metastasis: mechanisms and clinical applications Oncotarget, 8 (2017),pp. 81558-81571
|
[51] |
Jin, Z., Kirilly, D., Weng, C. et al. Cell Stem Cell, 2 (2008),pp. 39-49
|
[52] |
Johansen, T., Lamark, T. Selective autophagy mediated by autophagic adapter proteins Autophagy, 7 (2011),pp. 279-296
|
[53] |
Juhasz, G., Erdi, B., Sass, M. et al. Genes Dev., 21 (2007),pp. 3061-3066
|
[54] |
Katheder, N.S., Khezri, R., O'Farrell, F. et al. Microenvironmental autophagy promotes tumour growth Nature, 541 (2017),pp. 417-420
|
[55] |
Kim, M., Ho, A., Lee, J.H. Autophagy and human neurodegenerative diseases-a fly's perspective Int. J. Mol. Sci., 18 (2017)
|
[56] |
Kim, M., Park, H.L., Park, H.W. et al. Autophagy, 9 (2013),pp. 1201-1213
|
[57] |
Kim, M., Sandford, E., Gatica, D. et al. eLife, 5 (2016)
|
[58] |
Klionsky, D.J., Cregg, J.M., , Emr, S.D. et al. A unified nomenclature for yeast autophagy-related genes Dev. Cell, 5 (2003),pp. 539-545
|
[59] |
Komatsu, M., Waguri, S., Chiba, T. et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice Nature, 441 (2006),pp. 880-884
|
[60] |
Komatsu, M., Wang, Q.J., Holstein, G.R. et al. Essential role for autophagy protein atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration Proc. Natl. Acad. Sci. U. S. A., 104 (2007),pp. 14489-14494
|
[61] |
Korzelius, J., Naumann, S.K., Loza-Coll, M.A. et al. EMBO J., 33 (2014),pp. 2967-2982
|
[62] |
Kriegenburg, F., Ungermann, C., Reggiori, F. Coordination of autophagosome-lysosome fusion by atg8 family members Curr. Biol., 28 (2018),pp. R512-R518
|
[63] |
Lavoie, C.A., Ohlstein, B., McKearin, D.M. Localization and function of bam protein require the benign gonial cell neoplasm gene product Dev. Biol., 212 (1999),pp. 405-413
|
[64] |
Lee, J.J., Sanchez-Martinez, A., Zarate, A.M. et al. J. Cell Biol., 217 (2018),pp. 1613-1622
|
[65] |
Li, H., Jasper, H. Gastrointestinal stem cells in health and disease: from flies to humans Dis. Model Mech., 9 (2016),pp. 487-499
|
[66] |
Li, H., Ruberu, K., Munoz, S.S. et al. Apolipoprotein d modulates amyloid pathology in app/ps1 alzheimer's disease mice Neurobiol. Aging, 36 (2015),pp. 1820-1833
|
[67] |
Ling, D., Salvaterra, P.M. Acta Neuropathol., 121 (2011),pp. 183-191
|
[68] |
Ling, D., Song, H.J., Garza, D. et al. PLoS One, 4 (2009),p. e4201
|
[69] |
Liu, M., Lim, T.M., Cai, Y. Sci. Signal., 3 (2010),p. ra57
|
[70] |
Liu, Y., Gordesky-Gold, B., Leney-Greene, M. et al. Cell Host Microbe, 24 (2018)
|
[71] |
Lorincz, P., Mauvezin, C., Juhasz, G. Cells, 6 (2017),p. 22
|
[72] |
Lorincz, P., Toth, S., Benko, P. et al. Rab2 promotes autophagic and endocytic lysosomal degradation J. Cell Biol., 216 (2017),pp. 1937-1947
|
[73] |
Man, S.M. Inflammasomes in the gastrointestinal tract: infection, cancer and gut microbiota homeostasis Nat. Rev. Gastroenterol. Hepatol., 15 (2018),pp. 721-737
|
[74] |
Manent, J., Banerjee, S., de Matos Simoes, R. et al. Autophagy suppresses ras-driven epithelial tumourigenesis by limiting the accumulation of reactive oxygen species Oncogene, 36 (2017),pp. 5576-5592
|
[75] |
Markstein, M., Dettorre, S., Cho, J. et al. Proc. Natl. Acad. Sci. U. S. A., 111 (2014),pp. 4530-4535
|
[76] |
Mathew, R., Karantza-Wadsworth, V., White, E. Role of autophagy in cancer Nat. Rev. Cancer, 7 (2007),pp. 961-967
|
[77] |
Mauvezin, C., Ayala, C., Braden, C.R. et al. Methods, 68 (2014),pp. 134-139
|
[78] |
McGovern, D.P., Kugathasan, S., Cho, J.H. Genetics of inflammatory bowel diseases Gastroenterology, 149 (2015)
|
[79] |
McKearin, D., Ohlstein, B. A role for the drosophila bag-of-marbles protein in the differentiation of cystoblasts from germline stem cells Development, 121 (1995),pp. 2937-2947
|
[80] |
Mizushima, N., Levine, B. Autophagy in mammalian development and differentiation Nat. Cell Biol., 12 (2010),pp. 823-830
|
[81] |
Moretti, J., Roy, S., Bozec, D. et al. Sting senses microbial viability to orchestrate stress-mediated autophagy of the endoplasmic reticulum Cell, 171 (2017),pp. 809-823. e813
|
[82] |
Mowers, E.E., Sharifi, M.N., Macleod, K.F. Functions of autophagy in the tumor microenvironment and cancer metastasis FEBS J., 285 (2018),pp. 1751-1766
|
[83] |
Mukherjee, A., Patel, B., Koga, H. et al. Autophagy, 12 (2016),pp. 1984-1999
|
[84] |
Mulakkal, N.C., Nagy, P., Takats, S. et al. BioMed Res. Int., 2014 (2014),p. 273473
|
[85] |
Murthy, A., Li, Y., Peng, I. et al. Nature, 506 (2014),pp. 456-462
|
[86] |
Nagy, P., Kovacs, L., Sandor, G.O. et al. Dis. Model Mech., 9 (2016),pp. 501-512
|
[87] |
Nagy, P., Sandor, G.O., Juhasz, G. Sci. Rep., 8 (2018),p. 4644
|
[88] |
Nagy, P., Szatmari, Z., Sandor, G.O. et al. Development, 144 (2017),pp. 3990-4001
|
[89] |
Nagy, P., Varga, A., Kovacs, A.L. et al. Methods, 75 (2015),pp. 151-161
|
[90] |
Nagy, P., Varga, A., Pircs, K. et al. PLoS Genet., 9 (2013),p. e1003664
|
[91] |
Nakamoto, M., Moy, R.H., Xu, J. et al. Immunity, 36 (2012),pp. 658-667
|
[92] |
Napoletano, F., Occhi, S., Calamita, P. et al. EMBO J., 30 (2011),pp. 945-958
|
[93] |
Nezis, I.P., Simonsen, A., Sagona, A.P. et al. J. Cell Biol., 180 (2008),pp. 1065-1071
|
[94] |
Nisoli, I., Chauvin, J.P., Napoletano, F. et al. Neurodegeneration by polyglutamine atrophin is not rescued by induction of autophagy Cell Death Differ., 17 (2010),pp. 1577-1587
|
[95] |
O'Farrell, F., Lobert, V.H., Sneeggen, M. et al. Class iii phosphatidylinositol-3-oh kinase controls epithelial integrity through endosomal lkb1 regulation Nat. Cell Biol., 19 (2017),pp. 1412-1423
|
[96] |
Ochaba, J., Lukacsovich, T., Csikos, G. et al. Potential function for the huntingtin protein as a scaffold for selective autophagy Proc. Natl. Acad. Sci. U. S. A., 111 (2014),pp. 16889-16894
|
[97] |
Palandri, A., Martin, E., Russi, M. et al. Dis. Model Mech., 11 (2018)
|
[98] |
Palikaras, K., Lionaki, E., Tavernarakis, N. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology Nat. Cell Biol., 20 (2018),pp. 1013-1022
|
[99] |
Pandey, U.B., Nie, Z., Batlevi, Y. et al. Hdac6 rescues neurodegeneration and provides an essential link between autophagy and the ups Nature, 447 (2007),pp. 859-863
|
[100] |
Papp, D., Kovacs, T., Billes, V. et al. Auten-67, an autophagy-enhancing drug candidate with potent antiaging and neuroprotective effects Autophagy, 12 (2016),pp. 273-286
|
[101] |
Perez, E., Das, G., Bergmann, A. et al. Autophagy regulates tissue overgrowth in a context-dependent manner Oncogene, 34 (2015),pp. 3369-3376
|
[102] |
Perez, F.A., Palmiter, R.D. Parkin-deficient mice are not a robust model of parkinsonism Proc. Natl. Acad. Sci. U. S. A., 102 (2005),pp. 2174-2179
|
[103] |
Perrimon, N. Dev. Biol., 127 (1988),pp. 392-407
|
[104] |
Pircs, K., Nagy, P., Varga, A. et al. PLoS One, 7 (2012)
|
[105] |
Poon, C.L.C., Brumby, A.M., Richardson, H.E. Int. J. Mol. Sci., 19 (2018)
|
[106] |
Qian, M., Fang, X., Wang, X. Autophagy and inflammation Clin. Transl. Med., 6 (2017),p. 24
|
[107] |
Ravikumar, B., Vacher, C., Berger, Z. et al. Inhibition of mtor induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of huntington disease Nat. Genet., 36 (2004),pp. 585-595
|
[108] |
Ray, A., Speese, S.D., Logan, M.A. J. Neurosci., 37 (2017),pp. 11881-11893
|
[109] |
Reiter, L.T., Potocki, L., Chien, S. et al. Genome Res., 11 (2001),pp. 1114-1125
|
[110] |
Revuelta, M., Matheu, A. Autophagy in stem cell aging Aging Cell, 16 (2017),pp. 912-915
|
[111] |
Richardson, H.E., Portela, M. BioMed Res. Int., 2018 (2018),p. 4258387
|
[112] |
Rodolfo, C., Di Bartolomeo, S., Cecconi, F. Autophagy in stem and progenitor cells Cell. Mol. Life Sci., 73 (2016),pp. 475-496
|
[113] |
Rousseaux, M.W.C., Vazquez-Velez, G.E., Al-Ramahi, I. et al. A druggable genome screen identifies modifiers of alpha-synuclein levels via a tiered cross-species validation approach J. Neurosci., 38 (2018),pp. 9286-9301
|
[114] |
Rui, Y.N., Xu, Z., Patel, B. et al. Huntingtin functions as a scaffold for selective macroautophagy Nat. Cell Biol., 17 (2015),pp. 262-275
|
[115] |
Rusten, T.E., Vaccari, T., Lindmo, K. et al. Escrts and fab 1 regulate distinct steps of autophagy Curr. Biol., 17 (2007),pp. 1817-1825
|
[116] |
Saitoh, Y., Fujikake, N., Okamoto, Y. et al. P62 plays a protective role in the autophagic degradation of polyglutamine protein oligomers in polyglutamine disease model flies J. Biol. Chem., 290 (2015),pp. 1442-1453
|
[117] |
Sansone, C.L., Cohen, J., Yasunaga, A. et al. Cell Host Microbe, 18 (2015),pp. 571-581
|
[118] |
Sarkar, S., Krishna, G., Imarisio, S. et al. A rational mechanism for combination treatment of Huntington's disease using lithium and rapamycin Hum. Mol. Genet., 17 (2008),pp. 170-178
|
[119] |
Seguin, A., Monnier, V., Palandri, A. et al. Oxid. Med. Cell Longev., 2015 (2015),p. 565140
|
[120] |
Senturk, M., Bellen, H.J. Genetic strategies to tackle neurological diseases in fruit flies Curr. Opin. Neurobiol., 50 (2018),pp. 24-32
|
[121] |
Seong, E., Insolera, R., Dulovic, M. et al. Mutations in vps13d lead to a new recessive ataxia with spasticity and mitochondrial defects Ann. Neurol., 83 (2018),pp. 1075-1088
|
[122] |
Sharif, T., Martell, E., Dai, C. et al. Autophagic homeostasis is required for the pluripotency of cancer stem cells Autophagy, 13 (2017),pp. 264-284
|
[123] |
Shen, R., Weng, C., Yu, J. et al. Proc. Natl. Acad. Sci. U. S. A., 106 (2009),pp. 11623-11628
|
[124] |
Simonsen, A., Cumming, R.C., Brech, A. et al. Autophagy, 4 (2008),pp. 176-184
|
[125] |
Sinka, R., Gillingham, A.K., Kondylis, V. et al. Golgi coiled-coil proteins contain multiple binding sites for rab family g proteins J. Cell Biol., 183 (2008),pp. 607-615
|
[126] |
Sonoshita, M., Cagan, R.L. Curr. Top. Dev. Biol., 121 (2017),pp. 287-309
|
[127] |
Stoker, T.B., Torsney, K.M., Barker, R.A. Emerging treatment approaches for Parkinson's disease Front. Neurosci., 12 (2018),p. 693
|
[128] |
Stoyas, C.A., La Spada, A.R. The cag-polyglutamine repeat diseases: a clinical, molecular, genetic, and pathophysiologic nosology Handb. Clin. Neurol., 147 (2018),pp. 143-170
|
[129] |
Strange, K. Drug discovery in fish, flies, and worms ILAR J., 57 (2016),pp. 133-143
|
[130] |
Sui, X., Kong, N., Ye, L. et al. P38 and jnk mapk pathways control the balance of apoptosis and autophagy in response to chemotherapeutic agents Cancer Lett., 344 (2014),pp. 174-179
|
[131] |
Takats, S., Glatz, G., Szenci, G. et al. Non-canonical role of the snare protein ykt6 in autophagosome-lysosome fusion PLoS Genet., 14 (2018),p. e1007359
|
[132] |
Takats, S., Nagy, P., Varga, A. et al. J. Cell Biol., 201 (2013),pp. 531-539
|
[133] |
Takats, S., Pircs, K., Nagy, P. et al. Mol. Biol. Cell, 25 (2014),pp. 1338-1354
|
[134] |
Takeuchi, T., Nagai, Y. Protein misfolding and aggregation as a therapeutic target for polyglutamine diseases Brain Sci., 7 (2017)
|
[135] |
Tekirdag, K., Cuervo, A.M. Chaperone-mediated autophagy and endosomal microautophagy: joint by a chaperone J. Biol. Chem., 293 (2018),pp. 5414-5424
|
[136] |
Thachil, E., Hugot, J.P., Arbeille, B. et al. Abnormal activation of autophagy-induced crinophagy in paneth cells from patients with crohn's disease Gastroenterology, 142 (2012),pp. 1097-1099.e4
|
[137] |
Uhlirova, M., Bohmann, D. EMBO J., 25 (2006),pp. 5294-5304
|
[138] |
Underwood, B.R., Imarisio, S., Fleming, A. et al. Antioxidants can inhibit basal autophagy and enhance neurodegeneration in models of polyglutamine disease Hum. Mol. Genet., 19 (2010),pp. 3413-3429
|
[139] |
Uytterhoeven, V., Lauwers, E., Maes, I. et al. Hsc70-4 deforms membranes to promote synaptic protein turnover by endosomal microautophagy Neuron, 88 (2015),pp. 735-748
|
[140] |
Varga, K., Nagy, P., Arsikin Csordas, K. et al. Sci. Rep., 6 (2016),p. 34641
|
[141] |
Venkatachalam, K., Long, A.A., Elsaesser, R. et al. Cell, 135 (2008),pp. 838-851
|
[142] |
Von, G. Z. Zellforsch. Mikrosk. Anat., 61 (1963),pp. 56-95
|
[143] |
Wang, L., Hagemann, T.L., Messing, A. et al. J. Neurosci., 36 (2016),pp. 1445-1455
|
[144] |
Wang, T., Lao, U., Edgar, B.A. J. Cell Biol., 186 (2009),pp. 703-711
|
[145] |
Wang, Y.C., Lee, C.M., Lee, L.C. et al. Mitochondrial dysfunction and oxidative stress contribute to the pathogenesis of spinocerebellar ataxia type 12 (sca12) J. Biol. Chem., 286 (2011),pp. 21742-21754
|
[146] |
Xie, T., Spradling, A.C. Science, 290 (2000),pp. 328-330
|
[147] |
Yang, Z., Goronzy, J.J., Weyand, C.M. Autophagy in autoimmune disease J. Mol. Med. (Berl.), 93 (2015),pp. 707-717
|
[148] |
Yoon, W.H., Sandoval, H., Nagarkar-Jaiswal, S. et al. Loss of nardilysin, a mitochondrial co-chaperone for alpha-ketoglutarate dehydrogenase, promotes mtorc1 activation and neurodegeneration Neuron, 93 (2017),pp. 115-131
|
[149] |
Zhang, Y.Z., Li, Y.Y. Inflammatory bowel disease: pathogenesis World J. Gastroenterol., 20 (2014),pp. 91-99
|
[150] |
Zhao, S., Fortier, T.M., Baehrecke, E.H. Autophagy promotes tumor-like stem cell niche occupancy Curr. Biol., 28 (2018),pp. 3056-3064
|
[151] |
Zhu, J.H., Guo, F., Shelburne, J. et al. Localization of phosphorylated erk/map kinases to mitochondria and autophagosomes in lewy body diseases Brain Pathol., 13 (2003),pp. 473-481
|