5.9
CiteScore
5.9
Impact Factor
Volume 46 Issue 4
Apr.  2019
Turn off MathJax
Article Contents

Perspectives on gene expression regulation techniques in Drosophila

doi: 10.1016/j.jgg.2019.03.006
More Information
  • Corresponding author: E-mail address: nijq@mail.tsinghua.edu.cn (Jian-Quan Ni)
  • Received Date: 2018-11-19
  • Accepted Date: 2019-03-12
  • Rev Recd Date: 2019-02-27
  • Available Online: 2019-04-17
  • Publish Date: 2019-04-20
  • Gene expression regulation, including loss-of-function and gain-of-function assays, is a powerful method to study developmental and disease mechanisms. Drosophila melanogaster is an ideal model system particularly well-equipped with many genetic tools. In this review, we describe and discuss the gene expression regulation techniques recently developed and their applications, including the CRISPR/Cas9-triggered heritable mutation system, CRISPR/dCas9-based transcriptional activation (CRISPRa) system, and CRISPR/dCas9-based transcriptional repression (CRISPRi) system, as well as the next-generation transgenic RNAi system. The main purpose of this review is to provide the fly research community with an updated summary of newly developed gene expression regulation techniques and help the community to select appropriate methods and optimize the research strategy.
  • loading
  • [1]
    Aagaard, L.A., Zhang, J., von Eije, K.J. et al. Engineering and optimization of the miR-106b cluster for ectopic expression of multiplexed anti-HIV RNAs Gene Ther., 15 (2008),pp. 1536-1549
    [2]
    Achkar, N.P., Cambiagno, D.A., Manavella, P.A. miRNA biogenesis: a dynamic pathway Trends Plant Sci., 21 (2016),pp. 1034-1044
    [3]
    Andrews, B.J., Proteau, G.A., Beatty, L.G. et al. The FLP recombinase of the 2 micron circle DNA of yeast: interaction with its target sequences Cell, 40 (1985),pp. 795-803
    [4]
    Barrangou, R., Fremaux, C., Deveau, H. et al. CRISPR provides acquired resistance against viruses in prokaryotes Science, 315 (2007),pp. 1709-1712
    [5]
    Bassett, A.R., Liu, J.L. J. Genet. Genomics, 41 (2014),pp. 7-19
    [6]
    Bassett, A.R., Tibbit, C., Ponting, C.P. et al. Cell Rep., 4 (2013),pp. 220-228
    [7]
    Beumer, K., Bhattacharyya, G., Bibikova, M. et al. Genetics, 172 (2006),pp. 2391-2403
    [8]
    Beumer, K.J., Trautman, J.K., Bozas, A. et al. Proc. Natl. Acad. Sci. U. S. A., 105 (2008),pp. 19821-19826
    [9]
    Bibikova, M., Beumer, K., Trautman, J.K. et al. Enhancing gene targeting with designed zinc finger nucleases Science, 300 (2003),p. 764
    [10]
    Bibikova, M., Golic, M., Golic, K.G. et al. Genetics, 161 (2002),pp. 1169-1175
    [11]
    Bischof, J., Bjorklund, M., Furger, E. et al. Development, 140 (2013),pp. 2434-2442
    [12]
    Boch, J., Scholze, H., Schornack, S. et al. Breaking the code of DNA binding specificity of TAL-type III effectors Science, 326 (2009),pp. 1509-1512
    [13]
    Bonas, U., Stall, R.E., Staskawicz, B. Mol. Gen. Genet., 218 (1989),pp. 127-136
    [14]
    Boutros, M., Ahringer, J. The art and design of genetic screens: RNA interference Nat. Rev. Genet., 9 (2008),pp. 554-566
    [15]
    Brand, A.H., Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes Development, 118 (1993),pp. 401-415
    [16]
    Brouns, S.J., Jore, M.M., Lundgren, M. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes Science, 321 (2008),pp. 960-964
    [17]
    Cermak, T., Doyle, E.L., Christian, M. et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting Nucleic Acids Res., 39 (2011),p. e82
    [18]
    Chakraborty, S., Ji, H., Kabadi, A.M. et al. A CRISPR/Cas9-based system for reprogramming cell lineage specification Stem Cell Rep., 3 (2014),pp. 940-947
    [19]
    Chalupnikova, K., Nejepinska, J., Svoboda, P. Production and application of long dsRNA in mammalian cells Methods Mol. Biol., 942 (2013),pp. 291-314
    [20]
    Chavez, A., Scheiman, J., Vora, S. et al. Highly efficient Cas9-mediated transcriptional programming Nat. Methods, 12 (2015),pp. 326-328
    [21]
    Chavez, A., Tuttle, M., Pruitt, B.W. et al. Comparison of Cas9 activators in multiple species Nat. Methods, 13 (2016),pp. 563-567
    [22]
    Cheng, A.W., Wang, H., Yang, H. et al. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system Cell Res., 23 (2013),pp. 1163-1171
    [23]
    Chylinski, K., Makarova, K.S., Charpentier, E. et al. Classification and evolution of type II CRISPR-Cas systems Nucleic Acids Res., 42 (2014),pp. 6091-6105
    [24]
    Cohen, H.C., Xiong, M.P. J. RNAi Gene Silencing, 7 (2011),pp. 456-463
    [25]
    Conaway, J.W. Introduction to theme "Chromatin, epigenetics, and transcription" Annu. Rev. Biochem., 81 (2012),pp. 61-64
    [26]
    Cong, L., Ran, F.A., Cox, D. et al. Multiplex genome engineering using CRISPR/Cas systems Science, 339 (2013),pp. 819-823
    [27]
    Consortium, E.P. A user's guide to the encyclopedia of DNA elements (ENCODE) PLoS Biol., 9 (2011),p. e1001046
    [28]
    Cooley, L., Kelley, R., Spradling, A. Science, 239 (1988),pp. 1121-1128
    [29]
    Doudna, J.A., Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9 Science, 346 (2014),p. 1258096
    [30]
    Dubowy, C., Sehgal, A. Genetics, 205 (2017),pp. 1373-1397
    [31]
    Ecco, G., Imbeault, M., Trono, D. KRAB zinc finger proteins Development, 144 (2017),pp. 2719-2729
    [32]
    Engels, W.R. Bioessays, 14 (1992),pp. 681-686
    [33]
    Ewen-Campen, B., Perrimon, N. G3, 8 (2018),pp. 2749-2756
    [34]
    Ewen-Campen, B., Yang-Zhou, D., Fernandes, V.R. et al. Proc. Natl. Acad. Sci. U. S. A., 114 (2017),pp. 9409-9414
    [35]
    Fire, A., Xu, S., Montgomery, M.K. et al. Nature, 391 (1998),pp. 806-811
    [36]
    Fischer, J.A., Giniger, E., Maniatis, T. et al. Nature, 332 (1988),pp. 853-856
    [37]
    Fonfara, I., Le Rhun, A., Chylinski, K. et al. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems Nucleic Acids Res., 42 (2014),pp. 2577-2590
    [38]
    Friedland, A.E., Tzur, Y.B., Esvelt, K.M. et al. Nat. Methods, 10 (2013),pp. 741-743
    [39]
    Ghosh, S., Tibbit, C., Liu, J.L. Nucleic Acids Res., 44 (2016),p. e84
    [40]
    Gilbert, L.A., Horlbeck, M.A., Adamson, B. et al. Genome-scale CRISPR-mediated control of gene repression and activation Cell, 159 (2014),pp. 647-661
    [41]
    Gilbert, L.A., Larson, M.H., Morsut, L. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes Cell, 154 (2013),pp. 442-451
    [42]
    Gokcezade, J., Sienski, G., Duchek, P. G3, 4 (2014),pp. 2279-2282
    [43]
    Golic, K.G., Lindquist, S. Cell, 59 (1989),pp. 499-509
    [44]
    Gratz, S.J., Cummings, A.M., Nguyen, J.N. et al. Genetics, 194 (2013),pp. 1029-1035
    [45]
    Gratz, S.J., Ukken, F.P., Rubinstein, C.D. et al. Genetics, 196 (2014),pp. 961-971
    [46]
    Hammond, S.M. An overview of microRNAs Adv. Drug Deliv. Rev., 87 (2015),pp. 3-14
    [47]
    Heigwer, F., Kerr, G., Boutros, M. E-CRISP: fast CRISPR target site identification Nat. Methods, 11 (2014),pp. 122-123
    [48]
    Hilton, I.B., D'Ippolito, A.M., Vockley, C.M. et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers Nat. Biotechnol., 33 (2015),pp. 510-517
    [49]
    Hruscha, A., Krawitz, P., Rechenberg, A. et al. Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish Development, 140 (2013),pp. 4982-4987
    [50]
    Hsu, P.D., Lander, E.S., Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering Cell, 157 (2014),pp. 1262-1278
    [51]
    Ishino, Y., Shinagawa, H., Makino, K. et al. J. Bacteriol., 169 (1987),pp. 5429-5433
    [52]
    Jansen, R., Embden, J.D., Gaastra, W. et al. Identification of genes that are associated with DNA repeats in prokaryotes Mol. Microbiol., 43 (2002),pp. 1565-1575
    [53]
    Jia, Y., Xu, R.G., Ren, X. et al. Proc. Natl. Acad. Sci. U. S. A., 115 (2018),pp. 4719-4724
    [54]
    Jiang, W., Brueggeman, A.J., Horken, K.M. et al. Eukaryot. Cell, 13 (2014),pp. 1465-1469
    [55]
    Jinek, M., Chylinski, K., Fonfara, I. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity Science, 337 (2012),pp. 816-821
    [56]
    Jinek, M., East, A., Cheng, A. et al. RNA-programmed genome editing in human cells eLife, 2 (2013),p. e00471
    [57]
    Kakidani, H., Ptashne, M. GAL4 activates gene expression in mammalian cells Cell, 52 (1988),pp. 161-167
    [58]
    Kanasty, R.L., Whitehead, K.A., Vegas, A.J. et al. Action and reaction: the biological response to siRNA and its delivery vehicles Mol. Ther., 20 (2012),pp. 513-524
    [59]
    Kennerdell, J.R., Carthew, R.W. Nat. Biotechnol., 18 (2000),pp. 896-898
    [60]
    Kondo, S., Ueda, R. Genetics, 195 (2013),pp. 715-721
    [61]
    Konermann, S., Brigham, M.D., Trevino, A.E. et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex Nature, 517 (2015),pp. 583-588
    [62]
    Lam, G., Thummel, C.S. Curr. Biol., 10 (2000),pp. 957-963
    [63]
    Lasko, P. Clin. Genet., 62 (2002),pp. 358-367
    [64]
    Lee, T., Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis Neuron, 22 (1999),pp. 451-461
    [65]
    Lewis, E., Bacher, F. Drosoph. Inf. Serv., 43 (1968),p. 193
    [66]
    Lin, S., Ewen-Campen, B., Ni, X. et al. Genetics, 201 (2015),pp. 433-442
    [67]
    Liu, J., Li, C., Yu, Z. et al. J. Genet. Genomics, 39 (2012),pp. 209-215
    [68]
    Liu, Q., Paroo, Z. Biochemical principles of small RNA pathways Annu. Rev. Biochem., 79 (2010),pp. 295-319
    [69]
    Liu, Y., Cao, Z., Wang, Y. et al. Genome-wide screening for functional long noncoding RNAs in human cells by Cas9 targeting of splice sites Nat. Biotechnol. (2018)
    [70]
    Ma, J., Przibilla, E., Hu, J. et al. Yeast activators stimulate plant gene expression Nature, 334 (1988),pp. 631-633
    [71]
    Maeder, M.L., Linder, S.J., Cascio, V.M. et al. CRISPR RNA-guided activation of endogenous human genes Nat. Methods, 10 (2013),pp. 977-979
    [72]
    Mahmoud, J., Fossett, N.G., Arbour-Reily, P. et al. Environ. Mol. Mutagen., 18 (1991),pp. 157-160
    [73]
    Mali, P., Aach, J., Stranges, P.B. et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering Nat. Biotechnol., 31 (2013),pp. 833-838
    [74]
    Margolin, J.F., Friedman, J.R., Meyer, W.K. et al. Kruppel-associated boxes are potent transcriptional repression domains Proc. Natl. Acad. Sci. U. S. A., 91 (1994),pp. 4509-4513
    [75]
    McGuire, S.E., Mao, Z., Davis, R.L. Sci. STKE 2004 (2004),p. pl6
    [76]
    Mohr, S., Bakal, C., Perrimon, N. Genomic screening with RNAi: results and challenges Annu. Rev. Biochem., 79 (2010),pp. 37-64
    [77]
    Montgomery, M.K., Xu, S., Fire, A. Proc. Natl. Acad. Sci. U. S. A., 95 (1998),pp. 15502-15507
    [78]
    Muller, H.J. Artificial transmutation of the gene Science, 66 (1927),pp. 84-87
    [79]
    Ni, J.Q., Liu, L.P., Binari, R. et al. Genetics, 182 (2009),pp. 1089-1100
    [80]
    Ni, J.Q., Markstein, M., Binari, R. et al. Nat. Methods, 5 (2008),pp. 49-51
    [81]
    Ni, J.Q., Zhou, R., Czech, B. et al. Nat. Methods, 8 (2011),pp. 405-407
    [82]
    Nogi, Y., Shimada, H., Matsuzaki, Y. et al. Mol. Gen. Genet., 195 (1984),pp. 29-34
    [83]
    Perez-Pinera, P., Kocak, D.D., Vockley, C.M. et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors Nat. Methods, 10 (2013),pp. 973-976
    [84]
    Perrimon, N., Ni, J.Q., Perkins, L. Cold Spring Harb. Perspect. Biol., 2 (2010),p. a003640
    [85]
    Petruk, S., Sedkov, Y., Riley, K.M. et al. Cell, 127 (2006),pp. 1209-1221
    [86]
    Pfeiffer, B.D., Jenett, A., Hammonds, A.S. et al. Proc. Natl. Acad. Sci. U. S. A., 105 (2008),pp. 9715-9720
    [87]
    Poe, A.R., Wang, B., Sapar, M.L. et al. Genetics, 211 (2019),pp. 459-472
    [88]
    Port, F., Chen, H.M., Lee, T. et al. Proc. Natl. Acad. Sci. U. S. A., 111 (2014),pp. E2967-E2976
    [89]
    Qi, L.S., Larson, M.H., Gilbert, L.A. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression Cell, 152 (2013),pp. 1173-1183
    [90]
    Qiao, H.H., Wang, F., Xu, R.G. et al. Nat. Commun., 9 (2018),p. 4160
    [91]
    Radzisheuskaya, A., Shlyueva, D., Muller, I. et al. Optimizing sgRNA position markedly improves the efficiency of CRISPR/dCas9-mediated transcriptional repression Nucleic Acids Res., 44 (2016),p. e141
    [92]
    Ren, X., Holsteens, K., Li, H. et al. Sci. China Life Sci., 60 (2017),pp. 476-489
    [93]
    Ren, X., Yang, Z., Mao, D. et al. G3, 4 (2014),pp. 1955-1962
    [94]
    Ren, X., Yang, Z., Xu, J. et al. Cell Rep., 9 (2014),pp. 1151-1162
    [95]
    Ren, X.J., Sun, J., Housden, B.E. et al. Proc. Natl. Acad. Sci. U. S. A., 110 (2013),pp. 19012-19017
    [96]
    Rorth, P. Proc. Natl. Acad. Sci. U. S. A., 93 (1996),pp. 12418-12422
    [97]
    Sander, J.D., Joung, J.K. CRISPR-Cas systems for editing, regulating and targeting genomes Nat. Biotechnol., 32 (2014),pp. 347-355
    [98]
    Sapranauskas, R., Gasiunas, G., Fremaux, C. et al. Nucleic Acids Res., 39 (2011),pp. 9275-9282
    [99]
    Sebo, Z.L., Lee, H.B., Peng, Y. et al. Fly, 8 (2014),pp. 52-57
    [100]
    Sin, O., Michels, H., Nollen, E.A. Biochim. Biophys. Acta, 1842 (2014),pp. 1951-1959
    [101]
    St Johnston, D. Wiley Interdiscip. Rev. Dev. Biol., 2 (2013),pp. 587-613
    [102]
    Sternberg, S.H., Redding, S., Jinek, M. et al. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9 Nature, 507 (2014),pp. 62-67
    [103]
    Tanenbaum, M.E., Gilbert, L.A., Qi, L.S. et al. A protein-tagging system for signal amplification in gene expression and fluorescence imaging Cell, 159 (2014),pp. 635-646
    [104]
    Venken, K.J., Schulze, K.L., Haelterman, N.A. et al. Nat. Methods, 8 (2011),pp. 737-743
    [105]
    Wang, H., Yang, H., Shivalila, C.S. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering Cell, 153 (2013),pp. 910-918
    [106]
    Williams, L., Carles, C.C., Osmont, K.S. et al. Proc. Natl. Acad. Sci. U. S. A., 102 (2005),pp. 9703-9708
    [107]
    Wilusz, J.E., Sunwoo, H., Spector, D.L. Long noncoding RNAs: functional surprises from the RNA world Genes Dev., 23 (2009),pp. 1494-1504
    [108]
    Xu, J., Ren, X., Sun, J. et al. J. Genet. Genomics, 42 (2015),pp. 141-149
    [109]
    Xu, T., Rubin, G.M. Development, 117 (1993),pp. 1223-1237
    [110]
    Xue, Z., Wu, M., Wen, K. et al. G3, 4 (2014),pp. 2167-2173
    [111]
    Yamaguchi, M., Yoshida, H.
    [112]
    Yu, Z., Ren, M., Wang, Z. et al. Genetics, 195 (2013),pp. 289-291
    [113]
    Zhong, J., Yedvobnick, B. Genet. Res., 91 (2009),pp. 243-258
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (108) PDF downloads (4) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return