[1] |
Aagaard, L.A., Zhang, J., von Eije, K.J. et al. Engineering and optimization of the miR-106b cluster for ectopic expression of multiplexed anti-HIV RNAs Gene Ther., 15 (2008),pp. 1536-1549
|
[2] |
Achkar, N.P., Cambiagno, D.A., Manavella, P.A. miRNA biogenesis: a dynamic pathway Trends Plant Sci., 21 (2016),pp. 1034-1044
|
[3] |
Andrews, B.J., Proteau, G.A., Beatty, L.G. et al. The FLP recombinase of the 2 micron circle DNA of yeast: interaction with its target sequences Cell, 40 (1985),pp. 795-803
|
[4] |
Barrangou, R., Fremaux, C., Deveau, H. et al. CRISPR provides acquired resistance against viruses in prokaryotes Science, 315 (2007),pp. 1709-1712
|
[5] |
Bassett, A.R., Liu, J.L. J. Genet. Genomics, 41 (2014),pp. 7-19
|
[6] |
Bassett, A.R., Tibbit, C., Ponting, C.P. et al. Cell Rep., 4 (2013),pp. 220-228
|
[7] |
Beumer, K., Bhattacharyya, G., Bibikova, M. et al. Genetics, 172 (2006),pp. 2391-2403
|
[8] |
Beumer, K.J., Trautman, J.K., Bozas, A. et al. Proc. Natl. Acad. Sci. U. S. A., 105 (2008),pp. 19821-19826
|
[9] |
Bibikova, M., Beumer, K., Trautman, J.K. et al. Enhancing gene targeting with designed zinc finger nucleases Science, 300 (2003),p. 764
|
[10] |
Bibikova, M., Golic, M., Golic, K.G. et al. Genetics, 161 (2002),pp. 1169-1175
|
[11] |
Bischof, J., Bjorklund, M., Furger, E. et al. Development, 140 (2013),pp. 2434-2442
|
[12] |
Boch, J., Scholze, H., Schornack, S. et al. Breaking the code of DNA binding specificity of TAL-type III effectors Science, 326 (2009),pp. 1509-1512
|
[13] |
Bonas, U., Stall, R.E., Staskawicz, B. Mol. Gen. Genet., 218 (1989),pp. 127-136
|
[14] |
Boutros, M., Ahringer, J. The art and design of genetic screens: RNA interference Nat. Rev. Genet., 9 (2008),pp. 554-566
|
[15] |
Brand, A.H., Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes Development, 118 (1993),pp. 401-415
|
[16] |
Brouns, S.J., Jore, M.M., Lundgren, M. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes Science, 321 (2008),pp. 960-964
|
[17] |
Cermak, T., Doyle, E.L., Christian, M. et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting Nucleic Acids Res., 39 (2011),p. e82
|
[18] |
Chakraborty, S., Ji, H., Kabadi, A.M. et al. A CRISPR/Cas9-based system for reprogramming cell lineage specification Stem Cell Rep., 3 (2014),pp. 940-947
|
[19] |
Chalupnikova, K., Nejepinska, J., Svoboda, P. Production and application of long dsRNA in mammalian cells Methods Mol. Biol., 942 (2013),pp. 291-314
|
[20] |
Chavez, A., Scheiman, J., Vora, S. et al. Highly efficient Cas9-mediated transcriptional programming Nat. Methods, 12 (2015),pp. 326-328
|
[21] |
Chavez, A., Tuttle, M., Pruitt, B.W. et al. Comparison of Cas9 activators in multiple species Nat. Methods, 13 (2016),pp. 563-567
|
[22] |
Cheng, A.W., Wang, H., Yang, H. et al. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system Cell Res., 23 (2013),pp. 1163-1171
|
[23] |
Chylinski, K., Makarova, K.S., Charpentier, E. et al. Classification and evolution of type II CRISPR-Cas systems Nucleic Acids Res., 42 (2014),pp. 6091-6105
|
[24] |
Cohen, H.C., Xiong, M.P. J. RNAi Gene Silencing, 7 (2011),pp. 456-463
|
[25] |
Conaway, J.W. Introduction to theme "Chromatin, epigenetics, and transcription" Annu. Rev. Biochem., 81 (2012),pp. 61-64
|
[26] |
Cong, L., Ran, F.A., Cox, D. et al. Multiplex genome engineering using CRISPR/Cas systems Science, 339 (2013),pp. 819-823
|
[27] |
Consortium, E.P. A user's guide to the encyclopedia of DNA elements (ENCODE) PLoS Biol., 9 (2011),p. e1001046
|
[28] |
Cooley, L., Kelley, R., Spradling, A. Science, 239 (1988),pp. 1121-1128
|
[29] |
Doudna, J.A., Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9 Science, 346 (2014),p. 1258096
|
[30] |
Dubowy, C., Sehgal, A. Genetics, 205 (2017),pp. 1373-1397
|
[31] |
Ecco, G., Imbeault, M., Trono, D. KRAB zinc finger proteins Development, 144 (2017),pp. 2719-2729
|
[32] |
Engels, W.R. Bioessays, 14 (1992),pp. 681-686
|
[33] |
Ewen-Campen, B., Perrimon, N. G3, 8 (2018),pp. 2749-2756
|
[34] |
Ewen-Campen, B., Yang-Zhou, D., Fernandes, V.R. et al. Proc. Natl. Acad. Sci. U. S. A., 114 (2017),pp. 9409-9414
|
[35] |
Fire, A., Xu, S., Montgomery, M.K. et al. Nature, 391 (1998),pp. 806-811
|
[36] |
Fischer, J.A., Giniger, E., Maniatis, T. et al. Nature, 332 (1988),pp. 853-856
|
[37] |
Fonfara, I., Le Rhun, A., Chylinski, K. et al. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems Nucleic Acids Res., 42 (2014),pp. 2577-2590
|
[38] |
Friedland, A.E., Tzur, Y.B., Esvelt, K.M. et al. Nat. Methods, 10 (2013),pp. 741-743
|
[39] |
Ghosh, S., Tibbit, C., Liu, J.L. Nucleic Acids Res., 44 (2016),p. e84
|
[40] |
Gilbert, L.A., Horlbeck, M.A., Adamson, B. et al. Genome-scale CRISPR-mediated control of gene repression and activation Cell, 159 (2014),pp. 647-661
|
[41] |
Gilbert, L.A., Larson, M.H., Morsut, L. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes Cell, 154 (2013),pp. 442-451
|
[42] |
Gokcezade, J., Sienski, G., Duchek, P. G3, 4 (2014),pp. 2279-2282
|
[43] |
Golic, K.G., Lindquist, S. Cell, 59 (1989),pp. 499-509
|
[44] |
Gratz, S.J., Cummings, A.M., Nguyen, J.N. et al. Genetics, 194 (2013),pp. 1029-1035
|
[45] |
Gratz, S.J., Ukken, F.P., Rubinstein, C.D. et al. Genetics, 196 (2014),pp. 961-971
|
[46] |
Hammond, S.M. An overview of microRNAs Adv. Drug Deliv. Rev., 87 (2015),pp. 3-14
|
[47] |
Heigwer, F., Kerr, G., Boutros, M. E-CRISP: fast CRISPR target site identification Nat. Methods, 11 (2014),pp. 122-123
|
[48] |
Hilton, I.B., D'Ippolito, A.M., Vockley, C.M. et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers Nat. Biotechnol., 33 (2015),pp. 510-517
|
[49] |
Hruscha, A., Krawitz, P., Rechenberg, A. et al. Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish Development, 140 (2013),pp. 4982-4987
|
[50] |
Hsu, P.D., Lander, E.S., Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering Cell, 157 (2014),pp. 1262-1278
|
[51] |
Ishino, Y., Shinagawa, H., Makino, K. et al. J. Bacteriol., 169 (1987),pp. 5429-5433
|
[52] |
Jansen, R., Embden, J.D., Gaastra, W. et al. Identification of genes that are associated with DNA repeats in prokaryotes Mol. Microbiol., 43 (2002),pp. 1565-1575
|
[53] |
Jia, Y., Xu, R.G., Ren, X. et al. Proc. Natl. Acad. Sci. U. S. A., 115 (2018),pp. 4719-4724
|
[54] |
Jiang, W., Brueggeman, A.J., Horken, K.M. et al. Eukaryot. Cell, 13 (2014),pp. 1465-1469
|
[55] |
Jinek, M., Chylinski, K., Fonfara, I. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity Science, 337 (2012),pp. 816-821
|
[56] |
Jinek, M., East, A., Cheng, A. et al. RNA-programmed genome editing in human cells eLife, 2 (2013),p. e00471
|
[57] |
Kakidani, H., Ptashne, M. GAL4 activates gene expression in mammalian cells Cell, 52 (1988),pp. 161-167
|
[58] |
Kanasty, R.L., Whitehead, K.A., Vegas, A.J. et al. Action and reaction: the biological response to siRNA and its delivery vehicles Mol. Ther., 20 (2012),pp. 513-524
|
[59] |
Kennerdell, J.R., Carthew, R.W. Nat. Biotechnol., 18 (2000),pp. 896-898
|
[60] |
Kondo, S., Ueda, R. Genetics, 195 (2013),pp. 715-721
|
[61] |
Konermann, S., Brigham, M.D., Trevino, A.E. et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex Nature, 517 (2015),pp. 583-588
|
[62] |
Lam, G., Thummel, C.S. Curr. Biol., 10 (2000),pp. 957-963
|
[63] |
Lasko, P. Clin. Genet., 62 (2002),pp. 358-367
|
[64] |
Lee, T., Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis Neuron, 22 (1999),pp. 451-461
|
[65] |
Lewis, E., Bacher, F. Drosoph. Inf. Serv., 43 (1968),p. 193
|
[66] |
Lin, S., Ewen-Campen, B., Ni, X. et al. Genetics, 201 (2015),pp. 433-442
|
[67] |
Liu, J., Li, C., Yu, Z. et al. J. Genet. Genomics, 39 (2012),pp. 209-215
|
[68] |
Liu, Q., Paroo, Z. Biochemical principles of small RNA pathways Annu. Rev. Biochem., 79 (2010),pp. 295-319
|
[69] |
Liu, Y., Cao, Z., Wang, Y. et al. Genome-wide screening for functional long noncoding RNAs in human cells by Cas9 targeting of splice sites Nat. Biotechnol. (2018)
|
[70] |
Ma, J., Przibilla, E., Hu, J. et al. Yeast activators stimulate plant gene expression Nature, 334 (1988),pp. 631-633
|
[71] |
Maeder, M.L., Linder, S.J., Cascio, V.M. et al. CRISPR RNA-guided activation of endogenous human genes Nat. Methods, 10 (2013),pp. 977-979
|
[72] |
Mahmoud, J., Fossett, N.G., Arbour-Reily, P. et al. Environ. Mol. Mutagen., 18 (1991),pp. 157-160
|
[73] |
Mali, P., Aach, J., Stranges, P.B. et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering Nat. Biotechnol., 31 (2013),pp. 833-838
|
[74] |
Margolin, J.F., Friedman, J.R., Meyer, W.K. et al. Kruppel-associated boxes are potent transcriptional repression domains Proc. Natl. Acad. Sci. U. S. A., 91 (1994),pp. 4509-4513
|
[75] |
McGuire, S.E., Mao, Z., Davis, R.L. Sci. STKE 2004 (2004),p. pl6
|
[76] |
Mohr, S., Bakal, C., Perrimon, N. Genomic screening with RNAi: results and challenges Annu. Rev. Biochem., 79 (2010),pp. 37-64
|
[77] |
Montgomery, M.K., Xu, S., Fire, A. Proc. Natl. Acad. Sci. U. S. A., 95 (1998),pp. 15502-15507
|
[78] |
Muller, H.J. Artificial transmutation of the gene Science, 66 (1927),pp. 84-87
|
[79] |
Ni, J.Q., Liu, L.P., Binari, R. et al. Genetics, 182 (2009),pp. 1089-1100
|
[80] |
Ni, J.Q., Markstein, M., Binari, R. et al. Nat. Methods, 5 (2008),pp. 49-51
|
[81] |
Ni, J.Q., Zhou, R., Czech, B. et al. Nat. Methods, 8 (2011),pp. 405-407
|
[82] |
Nogi, Y., Shimada, H., Matsuzaki, Y. et al. Mol. Gen. Genet., 195 (1984),pp. 29-34
|
[83] |
Perez-Pinera, P., Kocak, D.D., Vockley, C.M. et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors Nat. Methods, 10 (2013),pp. 973-976
|
[84] |
Perrimon, N., Ni, J.Q., Perkins, L. Cold Spring Harb. Perspect. Biol., 2 (2010),p. a003640
|
[85] |
Petruk, S., Sedkov, Y., Riley, K.M. et al. Cell, 127 (2006),pp. 1209-1221
|
[86] |
Pfeiffer, B.D., Jenett, A., Hammonds, A.S. et al. Proc. Natl. Acad. Sci. U. S. A., 105 (2008),pp. 9715-9720
|
[87] |
Poe, A.R., Wang, B., Sapar, M.L. et al. Genetics, 211 (2019),pp. 459-472
|
[88] |
Port, F., Chen, H.M., Lee, T. et al. Proc. Natl. Acad. Sci. U. S. A., 111 (2014),pp. E2967-E2976
|
[89] |
Qi, L.S., Larson, M.H., Gilbert, L.A. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression Cell, 152 (2013),pp. 1173-1183
|
[90] |
Qiao, H.H., Wang, F., Xu, R.G. et al. Nat. Commun., 9 (2018),p. 4160
|
[91] |
Radzisheuskaya, A., Shlyueva, D., Muller, I. et al. Optimizing sgRNA position markedly improves the efficiency of CRISPR/dCas9-mediated transcriptional repression Nucleic Acids Res., 44 (2016),p. e141
|
[92] |
Ren, X., Holsteens, K., Li, H. et al. Sci. China Life Sci., 60 (2017),pp. 476-489
|
[93] |
Ren, X., Yang, Z., Mao, D. et al. G3, 4 (2014),pp. 1955-1962
|
[94] |
Ren, X., Yang, Z., Xu, J. et al. Cell Rep., 9 (2014),pp. 1151-1162
|
[95] |
Ren, X.J., Sun, J., Housden, B.E. et al. Proc. Natl. Acad. Sci. U. S. A., 110 (2013),pp. 19012-19017
|
[96] |
Rorth, P. Proc. Natl. Acad. Sci. U. S. A., 93 (1996),pp. 12418-12422
|
[97] |
Sander, J.D., Joung, J.K. CRISPR-Cas systems for editing, regulating and targeting genomes Nat. Biotechnol., 32 (2014),pp. 347-355
|
[98] |
Sapranauskas, R., Gasiunas, G., Fremaux, C. et al. Nucleic Acids Res., 39 (2011),pp. 9275-9282
|
[99] |
Sebo, Z.L., Lee, H.B., Peng, Y. et al. Fly, 8 (2014),pp. 52-57
|
[100] |
Sin, O., Michels, H., Nollen, E.A. Biochim. Biophys. Acta, 1842 (2014),pp. 1951-1959
|
[101] |
St Johnston, D. Wiley Interdiscip. Rev. Dev. Biol., 2 (2013),pp. 587-613
|
[102] |
Sternberg, S.H., Redding, S., Jinek, M. et al. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9 Nature, 507 (2014),pp. 62-67
|
[103] |
Tanenbaum, M.E., Gilbert, L.A., Qi, L.S. et al. A protein-tagging system for signal amplification in gene expression and fluorescence imaging Cell, 159 (2014),pp. 635-646
|
[104] |
Venken, K.J., Schulze, K.L., Haelterman, N.A. et al. Nat. Methods, 8 (2011),pp. 737-743
|
[105] |
Wang, H., Yang, H., Shivalila, C.S. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering Cell, 153 (2013),pp. 910-918
|
[106] |
Williams, L., Carles, C.C., Osmont, K.S. et al. Proc. Natl. Acad. Sci. U. S. A., 102 (2005),pp. 9703-9708
|
[107] |
Wilusz, J.E., Sunwoo, H., Spector, D.L. Long noncoding RNAs: functional surprises from the RNA world Genes Dev., 23 (2009),pp. 1494-1504
|
[108] |
Xu, J., Ren, X., Sun, J. et al. J. Genet. Genomics, 42 (2015),pp. 141-149
|
[109] |
Xu, T., Rubin, G.M. Development, 117 (1993),pp. 1223-1237
|
[110] |
Xue, Z., Wu, M., Wen, K. et al. G3, 4 (2014),pp. 2167-2173
|
[111] |
Yamaguchi, M., Yoshida, H.
|
[112] |
Yu, Z., Ren, M., Wang, Z. et al. Genetics, 195 (2013),pp. 289-291
|
[113] |
Zhong, J., Yedvobnick, B. Genet. Res., 91 (2009),pp. 243-258
|