[1] |
Bhargava, R., Onyango, D.O., Stark, J.M. Regulation of single-strand annealing and its role in genome maintenance Trends Genet., 32 (2016),pp. 566-575
|
[2] |
Carnero, A., Blanco-Aparicio, C., Renner, O. et al. The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications Curr. Cancer Drug Targets, 8 (2008),pp. 187-198
|
[3] |
Ceccaldi, R., Rondinelli, B., D'Andrea, A.D. Repair pathway choices and consequences at the double-strand break Trends Cell Biol., 26 (2016),pp. 52-64
|
[4] |
Chen, F., Pruett-Miller, S.M., Huang, Y. et al. High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases Nat. Methods, 8 (2011),pp. 753-755
|
[5] |
Chu, V.T., Weber, T., Wefers, B. et al. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells Nat. Biotechnol., 33 (2015),pp. 543-548
|
[6] |
Devkota, S. The road less traveled: strategies to enhance the frequency of homology-directed repair (HDR) for increased efficiency of CRISPR/Cas-mediated transgenesis BMB Rep., 51 (2018),pp. 437-443
|
[7] |
Gaj, T., Gersbach, C.A., ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering Trends Biotechnol., 31 (2013),pp. 397-405
|
[8] |
Jayathilaka, K., Sheridan, S.D., Bold, T.D. et al. A chemical compound that stimulates the human homologous recombination protein RAD51 Proc. Natl. Acad. Sci. U. S. A., 105 (2008),pp. 15848-15853
|
[9] |
Kendall, J.D., Rewcastle, G.W., Frederick, R. et al. Synthesis, biological evaluation and molecular modelling of sulfonohydrazides as selective PI3K p110alpha inhibitors Bioorg. Med. Chem., 15 (2007),pp. 7677-7687
|
[10] |
Knight, Z.A., Gonzalez, B., Feldman, M.E. et al. A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling Cell, 125 (2006),pp. 733-747
|
[11] |
Li, G., Zhang, X., Zhong, C. et al. Small molecules enhance CRISPR/Cas9-mediated homology-directed genome editing in primary cells Sci. Rep., 7 (2017),p. 8943
|
[12] |
Liang, F., Han, M., Romanienko, P.J. et al. Homology-directed repair is a major double-strand break repair pathway in mammalian cells Proc. Natl. Acad. Sci. U. S. A., 95 (1998),pp. 5172-5177
|
[13] |
Lieber, M.R., Ma, Y., Pannicke, U. et al. Mechanism and regulation of human non-homologous DNA end-joining Nat. Rev. Mol. Cell Biol., 4 (2003),pp. 712-720
|
[14] |
Lin, S., Staahl, B.T., Alla, R.K. et al. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery eLife, 3 (2014)
|
[15] |
Mali, P., Yang, L., Esvelt, K.M. et al. RNA-guided human genome engineering via Cas9 Science, 339 (2013),pp. 823-826
|
[16] |
Maruyama, T., Dougan, S.K., Truttmann, M.C. et al. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining Nat. Biotechnol., 33 (2015),pp. 538-542
|
[17] |
Pardo, B., Gómez-González, B., Aguilera, A. DNA repair in mammalian cells: DNA double-strand break repair: how to fix a broken relationship Cell. Mol. Life Sci., 66 (2009),pp. 1039-1056
|
[18] |
Robert, F., Barbeau, M., Éthier, S. et al. Pharmacological inhibition of DNA-PK stimulates Cas9-mediated genome editing Genome Med., 7 (2015),p. 93
|
[19] |
Rothkamm, K., Krüger, I., Thompson, L.H. et al. Pathways of DNA double-strand break repair during the mammalian cell cycle Mol. Cell. Biol., 23 (2003),pp. 5706-5715
|
[20] |
Srivastava, M., Nambiar, M., Sharma, S. et al. An inhibitor of nonhomologous end-joining abrogates double-strand break repair and impedes cancer progression Cell, 151 (2012),pp. 1474-1487
|
[21] |
Storici, F., Snipe, J.R., Chan, G.K. et al. Conservative repair of a chromosomal double-strand break by single-strand DNA through two steps of annealing Mol. Cell. Biol., 26 (2006),pp. 7645-7657
|
[22] |
Thomas, D., Powell, J.A., Vergez, F. et al. Targeting acute myeloid leukemia by dual inhibition of PI3K signaling and Cdk9-mediated Mcl-1 transcription Blood, 122 (2013),pp. 738-748
|
[23] |
Wang, H., Yang, H., Shivalila, C.S. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering Cell, 153 (2013),pp. 910-918
|
[24] |
Wu, Y., Liang, D., Wang, Y. et al. Correction of a genetic disease in mouse via use of CRISPR-Cas9 Cell Stem Cell, 13 (2013),pp. 659-662
|
[25] |
Yang, D., Scavuzzo, M.A., Chmielowiec, J. et al. Enrichment of G2/M cell cycle phase in human pluripotent stem cells enhances HDR-mediated gene repair with customizable endonucleases Sci. Rep., 6 (2016),p. 21264
|
[26] |
Yang, H., Wang, H., Shivalila, C.S. et al. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering Cell, 154 (2013),pp. 1370-1379
|
[27] |
Yoshimi, K., Kunihiro, Y., Kaneko, T. et al. ssODN-mediated knock-in with CRISPR-Cas for large genomic regions in zygotes Nat. Commun., 7 (2016),p. 10431
|
[28] |
Yu, C., Liu, Y., Ma, T. et al. Small molecules enhance CRISPR genome editing in pluripotent stem cells Cell Stem Cell, 16 (2015),pp. 142-147
|
[29] |
Zhang, X., Li, Z., Yang, H. et al. Novel transgenic pigs with enhanced growth and reduced environmental impact eLife, 7 (2018)
|