[1] |
Abarca, D., Pizarro, A., Hernandez, I. et al. BMC Plant Biol., 14 (2014),p. 354
|
[2] |
Abu-Abied, M., Szwerdszarf, D., Mordehaev, I. et al. BMC Genomics, 15 (2014),p. 826
|
[3] |
Atkinson, J.A., Rasmussen, A., Traini, R. et al. Branching out in roots: uncovering form, function, and regulation Plant Physiol., 166 (2014),pp. 538-550
|
[4] |
, , de Oliveira Junkes, C.F., de Almeida, M.R., Matsuura, H.N. et al. Front. Plant Sci., 8 (2017),p. 1734
|
[5] |
Bellini, C., Pacurar, D.I., Perrone, I. Adventitious roots and lateral roots: similarities and differences Annu. Rev. Plant Biol., 65 (2014),pp. 639-666
|
[6] |
Birnbaum, K.D. How many ways are there to make a root? Curr. Opin. Plant Biol., 34 (2016),pp. 61-67
|
[7] |
Bolger, A.M., Lohse, M., Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data Bioinformatics, 30 (2014),pp. 2114-2120
|
[8] |
Chen, L., Tong, J., Xiao, L. et al. J. Exp. Bot., 67 (2016),pp. 4273-4284
|
[9] |
Chen, X., Qu, Y., Sheng, L. et al. Front. Plant Sci., 5 (2014),p. 208
|
[10] |
Cheng, Y., Dai, X., Zhao, Y. Genes Dev., 20 (2006),pp. 1790-1799
|
[11] |
da Costa, C.T., de Almeida, M.R., Ruedell, C.M. et al. When stress and development go hand in hand: main hormonal controls of adventitious rooting in cuttings Front. Plant Sci., 4 (2013),p. 133
|
[12] |
de Almeida, M.R., de Bastiani, D., Gaeta, M.L. et al. Plant Sci., 239 (2015),pp. 155-165
|
[13] |
De Klerk, G.-J. Rooting of microcuttings: theory and practice. In Vitro Cell Dev. Biol. Plant, 38 (2002),pp. 415-422
|
[14] |
De Klerk, G.-J., Van der Krieken, W., De Jong, J.C. The formation of adventitious roots: new concepts, new possibilities. In Vitro Cell. Dev. Biol. Plant, 35 (1999),pp. 189-199
|
[15] |
Dobin, A., Davis, C.A., Schlesinger, F. et al. STAR: ultrafast universal RNA-seq aligner Bioinformatics, 29 (2013),pp. 15-21
|
[16] |
Falasca, G., Altamura, M.M. Plant Biosyst., 137 (2003),pp. 265-274
|
[17] |
Gamborg, O.L., Miller, R.A., Ojima, K. Nutrient requirements of suspension cultures of soybean root cells Exp. Cell Res., 50 (1968),pp. 151-158
|
[18] |
He, C., Chen, X., Huang, H. et al. PLoS Genet., 8 (2012)
|
[19] |
Hitchcock, A.E., Zimmerman, P.W. Effect of the use of growth substances on the rooting response of cuttings Contrib. Boyce Thompson Inst., 8 (1936),pp. 63-79
|
[20] |
Hornitschek, P., Kohnen, M.V., Lorrain, S. et al. Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling Plant J., 71 (2012),pp. 699-711
|
[21] |
Hu, X., Xu, L. Plant Physiol., 172 (2016),pp. 2363-2373
|
[22] |
Leakey, R.R.B.
|
[23] |
Leng, N., Dawson, J.A., Thomson, J.A. et al. EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments Bioinformatics, 29 (2013),pp. 1035-1043
|
[24] |
Li, B., Dewey, C.N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome BMC Bioinformatics, 12 (2011),p. 323
|
[25] |
Liu, J., Sheng, L., Xu, Y. et al. Plant Cell, 26 (2014),pp. 1081-1093
|
[26] |
Murashige, T., Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue culture Physiol. Plantarum, 80 (1962),pp. 662-668
|
[27] |
Sanchez, M.C., Smith, A.G., Hackett, W.P. Localized expression of a proline-rich protein gene in juvenile and mature ivy petioles in relation to rooting competence Physiol. Plantarum, 93 (1995),pp. 207-216
|
[28] |
Sheng, L., Hu, X., Du, Y. et al. Development, 144 (2017),pp. 3126-3133
|
[29] |
Steffens, B., Rasmussen, A. The physiology of adventitious roots Plant Physiol., 170 (2016),pp. 603-617
|
[30] |
Stepanova, A.N., Robertson-Hoyt, J., Yun, J. et al. Cell, 133 (2008),pp. 177-191
|
[31] |
Sun, B., Chen, L., Liu, J. et al. Sci. Bull., 61 (2016),pp. 1728-1731
|
[32] |
Sun, L.-J., Xie, Y., Yan, Y.-F. et al. Paper-based analytical devices for direct electrochemical detection of free IAA and SA in plant samples with the weight of several milligrams Sens. Actuators B Chem., 247 (2017),pp. 336-342
|
[33] |
Sun, L.-J., Zhou, J.-J., Pan, J.-L. et al. Electrochemical mapping of indole-3-acetic acid and salicylic acid in whole pea seedlings under normal conditions and salinity Sens. Actuators B Chem., 276 (2018),pp. 543-551
|
[34] |
Swamy, S.L., Puri, S., Singh, A.K. New Forest., 23 (2002),pp. 143-157
|
[35] |
Tao, Y., Ferrer, J.L., Ljung, K. et al. Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants Cell, 133 (2008),pp. 164-176
|
[36] |
Thimann, K.V., Went, E.W. On the chemical nature of the rootforming hormone Proc. K. Ned. Akad. Wet. Ser. C Biol. Med. Sci., 37 (1934),pp. 456-459
|
[37] |
Verstraeten, I., Schotte, S., Geelen, D. Hypocotyl adventitious root organogenesis differs from lateral root development Front. Plant Sci., 5 (2014),p. 495
|
[38] |
Woo, H.-H., Hackett, W.P., Das, A. Physiol. Plantarum, 92 (1994),pp. 69-78
|
[39] |
Xu, L. Curr. Opin. Plant Biol., 41 (2018),pp. 39-45
|
[40] |
Xu, L., Huang, H. Genetic and epigenetic controls of plant regeneration Curr. Top. Dev. Biol., 108 (2014),pp. 1-33
|
[41] |
Yan, L., Wei, S., Wu, Y. et al. Mol. Plant, 8 (2015),pp. 1820-1823
|
[42] |
Zhao, Y., Christensen, S.K., Fankhauser, C. et al. A role for flavin monooxygenase-like enzymes in auxin biosynthesis Science, 291 (2001),pp. 306-309
|
[43] |
Zimmerman, W., Wilcoxon, F. Several chemical growth substances which cause initiation of roots and other responses in plants Contrib. Boyce Thompson Inst., 7 (1935),pp. 209-217
|