[1] |
Butler, T., Paul, J., Europe-Finner, N. et al. Role of serine-threonine phosphoprotein phosphatases in smooth muscle contractility Am. J. Physiol. Cell Physiol., 304 (2013),pp. C485-C504
|
[2] |
Chen, C.P., Chen, X., Qiao, Y.N. et al. J. Physiol., 593 (2015),pp. 681-700
|
[3] |
Collins, S., Martin, T.L., Surwit, R.S. et al. Genetic vulnerability to diet-induced obesity in the C57BL/6J mouse: physiological and molecular characteristics Physiol. Behav., 81 (2004),pp. 243-248
|
[4] |
Crowley, S.D., Gurley, S.B., Oliverio, M.I. et al. Distinct roles for the kidney and systemic tissues in blood pressure regulation by the renin-angiotensin system J. Clin. Investig., 115 (2005),pp. 1092-1099
|
[5] |
Das Evcimen, N., King, G.L. The role of protein kinase C activation and the vascular complications of diabetes Pharmacol. Res., 55 (2007),pp. 498-510
|
[6] |
Dimopoulos, G.J., Semba, S., Kitazawa, K. et al. Circ. Res., 100 (2007),pp. 121-129
|
[7] |
Dinh Cat, A.N., Friederich-Persson, M., White, A. et al. Adipocytes, aldosterone and obesity-related hypertension J. Mol. Endocrinol., 57 (2016),pp. F7-F21
|
[8] |
Eto, M. Regulation of cellular protein phosphatase-1 (PP1) by phosphorylation of the CPI-17 family, C-kinase-activated PP1 inhibitors J. Biol. Chem., 284 (2009),pp. 35273-35277
|
[9] |
Eto, M., Brautigan, D.L. Endogenous inhibitor proteins that connect Ser/Thr kinases and phosphatases in cell signaling IUBMB Life, 64 (2012),pp. 732-739
|
[10] |
Eto, M., Kitazawa, T., Matsuzawa, F. et al. Phosphorylation-induced conformational switching of CPI-17 produces a potent myosin phosphatase inhibitor Structure, 15 (2007),pp. 1591-1602
|
[11] |
Eto, M., Ohmori, T., Suzuki, M. et al. A novel protein phosphatase-1 inhibitory protein potentiated by protein kinase C. Isolation from porcine aorta media and characterization J. Biochem., 118 (1995),pp. 1104-1107
|
[12] |
Grassie, M.E., Moffat, L.D., Walsh, M.P. et al. The myosin phosphatase targeting protein (MYPT) family: a regulated mechanism for achieving substrate specificity of the catalytic subunit of protein phosphatase type 1δ Arch. Biochem. Biophys., 510 (2011),pp. 147-159
|
[13] |
Hall, J.E. The kidney, hypertension, and obesity Hypertension, 41 (2003),pp. 625-633
|
[14] |
Hall, J.E., Hildebrandt, D.A., Kuo, J. Obesity hypertension: role of leptin and sympathetic nervous system Am. J. Hypertens., 14 (2001),pp. 103S-115S
|
[15] |
He, W.Q., Peng, Y.J., Zhang, W.C. et al. Myosin light chain kinase is central to smooth muscle contraction and required for gastrointestinal motility in mice Gastroenterology, 135 (2008),pp. 610-620
|
[16] |
He, W.Q., Qiao, Y.N., Peng, Y.J. et al. Altered contractile phenotypes of intestinal smooth muscle in mice deficient in myosin phosphatase target subunit 1 Gastroenterology, 144 (2013),pp. 1456-1465
|
[17] |
He, W.Q., Qiao, Y.N., Zhang, C.H. et al. Role of myosin light chain kinase in regulation of basal blood pressure and maintenance of salt-induced hypertension Am. J. Physiol. Heart Circ. Physiol., 301 (2011),pp. H584-H591
|
[18] |
Himpens, B., Kitazawa, T., Somlyo, A.P. Pflügers Archiv, 417 (1990),pp. 21-28
|
[19] |
Kamm, K.E., Stull, J.T. The funtion of myosin and myosin light chain kinase phosphorylation in smooth muscle Annu. Rev. Pharmacol. Toxicol., 25 (1985),pp. 593-620
|
[20] |
Kawarazaki, W., Fujita, T. The role of aldosterone in obesity-related hypertension Am. J. Hypertens., 29 (2016),pp. 415-423
|
[21] |
Kim, J.I. High fat diet confers vascular hyper-contractility against angiotensin II through upregulation of MLCK and CPI-17 Korean J. Physiol. Pharmacol., 21 (2017),pp. 99-106
|
[22] |
King, R.J., Ajjan, R.A. Vascular risk in obesity: facts, misconceptions and the unknown Diabetes Vasc. Dis. Res., 14 (2016),pp. 2-13
|
[23] |
Kitazawa, T. Biochem. Biophys. Res. Commun., 401 (2010),pp. 75-78
|
[24] |
Kitazawa, T., Eto, M., Woodsome, T.P. et al. Agonists trigger G protein-mediated activation of the CPI-17 inhibitor phosphoprotein of myosin light chain phosphatase to enhance vascular smooth muscle contractility J. Biol. Chem., 275 (2000),pp. 9897-9900
|
[25] |
Kitazawa, T., Gaylinn, B.D., Denney, G.H. et al. J. Biol. Chem., 266 (1991),pp. 1708-1715
|
[26] |
Kitazawa, T., Masuo, M., Somlyo, A.P. G protein-mediated inhibition of myosin light-chain phosphatase in vascular smooth muscle Proc. Natl. Acad. Sci. U. S. A., 88 (1991),pp. 9307-9310
|
[27] |
Landsberg, L., Aronne, L.J., Beilin, L.J. et al. Obesity-related hypertension: pathogenesis, cardiovascular risk, and treatment. A position paper of the Obesity Society and the American Society of Hypertension J. Clin. Hypertens., 15 (2013),pp. 14-33
|
[28] |
Matsumura, F., Hartshorne, D.J. Myosin phosphatase target subunit: many roles in cell function Biochem. Biophys. Res. Commun., 369 (2008),pp. 149-156
|
[29] |
Mendelsohn, M.E. In hypertension, the kidney is not always the heart of the matter J. Clin. Investig., 115 (2005),pp. 840-844
|
[30] |
Montani, J.P., Antic, V., Yang, Z. et al. Pathways from obesity to hypertension: from the perspective of a vicious triangle Int. J. Obes., 26 (2002),pp. S28-S38
|
[31] |
Must, A., Spadano, J., Coakley, E.H. et al. The disease burden associated with overweight and obesity J. Am. Med. Assoc., 282 (1999),pp. 1523-1529
|
[32] |
Pang, H., Guo, Z., Su, W. et al. RhoA-Rho kinase pathway mediates thrombin- and U-46619-induced phosphorylation of a myosin phosphatase inhibitor, CPI-17, in vascular smooth muscle cells Am. J. Physiol. Cell Physiol., 289 (2005),pp. C352-C360
|
[33] |
Qiao, Y.N., He, W.Q., Chen, C.P. et al. Myosin phosphatase target subunit 1 (MYPT1) regulates the contraction and relaxation of vascular smooth muscle and maintains blood pressure J. Biol. Chem., 289 (2014),pp. 22512-22523
|
[34] |
Rahmouni, K., Correia, M.L.G., Haynes, W.G. et al. Obesity-associated hypertension: new insights into mechanisms Hypertension, 45 (2005),pp. 9-14
|
[35] |
Ran, F.A., Hsu, P.D., Lin, C.Y. et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity Cell, 154 (2013),pp. 1380-1389
|
[36] |
Senba, S., Eto, M., Yazawa, M. Identification of trimeric myosin phosphatase (PP1M) as a target for a novel PKC-potentiated protein phosphatase-1 inhibitory protein (CPI17) in porcine aorta smooth muscle J. Biochem., 125 (1999),pp. 354-362
|
[37] |
Somlyo, A.P., Somlyo, A.V. Signal transduction and regulation in smooth muscle Nature, 372 (1994),pp. 231-236
|
[38] |
Somlyo, A.P., Somlyo, A.V. Physiol. Rev., 83 (2003),pp. 1325-1358
|
[39] |
Taylor, D.A., Stull, J.T. Calcium dependence of myosin light chain phosphorylation in smooth muscle cells J. Biol. Chem., 263 (1988),pp. 14456-14462
|
[40] |
Tsai, M.H., Chang, A.N., Huang, J. et al. Constitutive phosphorylation of myosin phosphatase targeting subunit-1 in smooth muscle J. Physiol., 592 (2014),pp. 3031-3051
|
[41] |
Wang, C.Y., Liao, J.K. A mouse model of diet-induced obesity and insulin resistance Methods Mol. Biol., 821 (2012),pp. 421-433
|
[42] |
Whitesall, S.E., Hoff, J.B., Vollmer, A.P. et al. Comparison of simultaneous measurement of mouse systolic arterial blood pressure by radiotelemetry and tail-cuff methods Am. J. Physiol. Heart Circ. Physiol., 286 (2004),pp. H2408-H2415
|
[43] |
Woodsome, T.P., Eto, M., Everett, A. et al. J. Physiol., 535 (2001),pp. 553-564
|
[44] |
Xie, Z.W., Su, W., Guo, Z.H. et al. Up-regulation of CPI-17 phosphorylation in diabetic vasculature and high glucose cultured vascular smooth muscle cells Cardiovasc. Res., 69 (2006),pp. 491-501
|
[45] |
Yang, Q.H., Fujii, W., Kaji, N. et al. The essential role of phospho-T38 CPI-17 in the maintenance of physiological blood pressure using genetically modified mice FASEB J., 32 (2018),pp. 2095-2109
|