5.9
CiteScore
5.9
Impact Factor
Volume 45 Issue 12
Dec.  2018
Turn off MathJax
Article Contents

Loss of miR-83 extends lifespan and affects target gene expression in an age-dependent manner in Caenorhabditis elegans

doi: 10.1016/j.jgg.2018.11.003
More Information
  • Corresponding author: E-mail address: shange@ustc.edu.cn (Ge Shan)
  • Received Date: 2018-05-24
  • Accepted Date: 2018-11-06
  • Rev Recd Date: 2018-10-11
  • Available Online: 2018-12-09
  • Publish Date: 2018-12-20
  • MicroRNAs (miRNAs) are short non-coding RNAs that are involved in the post-transcriptional regulation of protein-coding genes. miRNAs modulate lifespan and the aging process in a variety of organisms. In this study, we identified a role of miR-83 in regulating lifespan of Caenorhabditis elegans. mir-83 mutants exhibited extended lifespan, and the overexpression of miR-83 was sufficient to decrease the prolonged lifespan of the mutants. We observed upregulation of the expression levels of a set of miR-83 target genes in young mir-83 mutant adults; while different sets of genes were upregulated in older mir-83 mutant adults. In vivo assays showed that miR-83 regulated expression of target genes including din-1, spp-9 and col-178, and we demonstrated that daf-16 and din-1 were required for the extension of lifespan in the mir-83 mutants. The regulation of din-1 by miR-83 during aging resulted in the differential expression of din-1 targets such as gst-4 and gst-10. In daf-2 mutants, the expression level of miR-83 was significantly reduced compared to wild-type animals. We identified a role for miR-83 in modulating lifespan in C. elegans and provided molecular insights into its functional mechanism.
  • Current address: Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA.
  • loading
  • [1]
    Agarwal, V., Bell, G.W., Nam, J. et al. Predicting effective microRNA target sites in mammalian mRNAs eLife, 4 (2015)
    [2]
    Ambros, V. The functions of animal microRNAs Nature, 431 (2004),pp. 350-355
    [3]
    Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function Cell, 116 (2004),pp. 281-297
    [4]
    Bartel, D.P. MicroRNAs: target recognition and regulatory functions Cell, 136 (2009),pp. 215-233
    [5]
    Boehm, M., Slack, F. Science, 310 (2005),pp. 1954-1957
    [6]
    Boulias, K., Horvitz, H.R. Cell Metabol., 15 (2012),pp. 439-450
    [7]
    Bowen, R.L., Atwood, C.S. Living and dying for sex Gerontology, 50 (2004),pp. 265-290
    [8]
    Broughton, J.P., Lovci, M.T., Huang, J.L. et al. Pairing beyond the seed supports microRNA targeting specificity Mol. Cell, 64 (2016),pp. 320-333
    [9]
    Budovskaya, Y.V., Wu, K., Southworth, L.K. et al. Cell, 134 (2008),pp. 291-303
    [10]
    Burke, S.L., Hammell, M., Ambros, V. Genetics, 200 (2015),pp. 1201-1218
    [11]
    Campisi, J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors Cell, 120 (2005),pp. 513-522
    [12]
    Cecchetelli, A.D., Cram, E.J. Regulating distal tip cell migration in space and time Mech. Dev., 148 (2017),pp. 11-17
    [13]
    de Lencastre, A., Pincus, Z., Zhou, K. et al. Curr. Biol., 20 (2010),pp. 2159-2168
    [14]
    Ebert, M.S., Sharp, P.A. Roles for micrornas in conferring robustness to biological processes Cell, 149 (2012),pp. 515-524
    [15]
    Eran, E., Roy, N., Israel, S. et al. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists BMC Bioinf., 10 (2009),p. 48
    [16]
    Griffiths-Jones, S., Saini, H.K., van Dongen, S. et al. miRBase: tools for microRNA genomics Nucleic Acids Res., 36 (2008),pp. D154-D158
    [17]
    Guo, H., Ingolia, N.T., Weissman, J.S. et al. Mammalian microRNAs predominantly act to decrease target mRNA levels Nature, 466 (2010),pp. 835-840
    [18]
    Halaschek-Wiener, J., Khattra, J.S., McKay, S. et al. Genome Res., 15 (2005),pp. 603-615
    [19]
    Hammell, M., Long, D., Zhang, L. et al. mirWIP: microRNA target prediction based on microRNA-containing ribonucleoprotein-enriched transcripts Nat. Methods, 5 (2008),pp. 813-819
    [20]
    He, F. Bio-protocol, Bio., 101 (2011),p. e47
    [21]
    Heid, J., Cencioni, C., Ripa, R. et al. Age-dependent increase of oxidative stress regulates microRNA-29 family preserving cardiachealth Sci. Rep., 7 (2017),p. 16839
    [22]
    Herndon, L.A., Schmeissner, P.J., Dudaronek, J.M. et al. Nature, 419 (2002),pp. 808-814
    [23]
    Hieronymus, H., Silver, P.A. A systems view of mRNP biology Genes Dev., 18 (2004),pp. 2845-2860
    [24]
    Hooten, N.N., Abdelmohsen, K., Gorospe, M. et al. MicroRNA expression patterns reveal differential expression of target genes with age PLoS One, 5 (2010)
    [25]
    Hooten, N.N., Fitzpatrick, M., , De, S. et al. Age-related changes in microRNA levels in serum Aging, 5 (2013),pp. 725-740
    [26]
    Horn, T., Boutros, M. E-RNAi: a web application for the multi-species design of RNAi reagents--2010 update Nucleic Acids Res., 38 (2010),pp. W332-W339
    [27]
    Hsu, A.L., Murphy, C.T., Kenyon, C. Regulation of aging and age-related disease by DAF-16 and heat-shock factor Science, 300 (2003),pp. 1142-1145
    [28]
    Huntzinger, E., Izaurralde, E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay Nat. Rev. Genet., 12 (2011),pp. 99-110
    [29]
    Ibañez-Ventoso, C., Yang, M., Guo, S. et al. Aging Cell, 5 (2006),pp. 235-246
    [30]
    Inukai, S., Pincus, Z., de Lencastre, A. et al. A microRNA feedback loop regulates global microRNA abundance during aging RNA, 24 (2018),pp. 159-172
    [31]
    Johnson, D.W., Llop, J.R., Farrell, S.F. et al. PLoS Genet., 10 (2014),p. e1004278
    [32]
    Jung, H.J., Suh, Y. MicroRNA in aging: from discovery to biology Curr. Genomics, 13 (2012),pp. 548-557
    [33]
    Kadandale, P., Chatterjee, I., Singson, A. Germline transformation of Caenorhabditis elegans by injection Methods Mol. Biol., 518 (2009),pp. 123-133
    [34]
    Kaletsky, R., Lakhina, V., Arey, R. et al. Nature, 529 (2015),pp. 92-96
    [35]
    Kaul, T.K., Reis, R.P., Ogungbe, I.V. et al. PLoS One, 9 (2014)
    [36]
    Keene, J.D., Lager, P.J. Post-transcriptional operons and regulons co-ordinating gene expression Chromosome Res., 13 (2005),pp. 327-337
    [37]
    Krek, A., Grün, D., Poy, M.N. et al. Combinatorial microRNA target predictions Nat. Genet., 37 (2005),pp. 495-500
    [38]
    Li, T., Yan, X., Jiang, M. et al. The comparison of microRNA profile of the dermis between the young and elderly J. Dermatol. Sci., 82 (2016),pp. 75-83
    [39]
    Liu, H., Wang, X., Wang, H.D. et al. Nat. Commun., 3 (2012),p. 1073
    [40]
    Lu, T., Pan, Y., Kao, S.Y. et al. Gene regulation and DNA damage in the ageing human brain Nature, 429 (2004),pp. 883-891
    [41]
    Lucanic, M., Graham, J., Scott, G. et al. Aging, 5 (2013),pp. 394-411
    [42]
    Ludewig, A.H., Kober-Eisermann, C., Weitzel, C. et al. Genes Dev., 18 (2004),pp. 2120-2133
    [43]
    Lund, J., Tedesco, P., Duke, K. et al. Curr. Biol., 12 (2002),pp. 1566-1573
    [44]
    Mann, F.G., Van Nostrand, E.L., Friedland, A.E. et al. PLoS Genet., 12 (2016)
    [45]
    Martinez, N.J., Ow, M.C., Barrasa, I.M. et al. Genes Dev., 22 (2008),pp. 2535-2549
    [46]
    Martinez, N.J., Ow, M.C., Reece-Hoyes, J.S. et al. Genome Res., 18 (2008),pp. 2005-2015
    [47]
    McGeer, P.L., McGeer, E.G. Inflammation and the degenerative diseases of aging Ann. N. Y. Acad. Sci., 1035 (2004),pp. 104-116
    [48]
    Meng, L., Chen, L., Li, Z. et al. J. Genet. Genomics, 40 (2013),pp. 445-452
    [49]
    Miska, E.A., Alvarez-Saavedra, E., Abbott, A.L. et al. PLoS Genet., 3 (2007),p. e215
    [50]
    Mukherji, S., Ebert, M.S., Zheng, G.X. et al. MicroRNAs can generate thresholds in target gene expression Nat. Genet., 43 (2011),pp. 854-859
    [51]
    Narayan, N., Morenos, L., Phipson, B. et al. Functionally distinct roles for different miR-155 expression levels through contrasting effects on gene expression, in acute myeloid leukaemia Leukemia, 31 (2017),pp. 808-820
    [52]
    Ogg, S., Paradis, S., Gottlieb, S. et al. Nature, 389 (1997),pp. 994-999
    [53]
    Paraskevopoulou, M.D., Georgakilas, G., Kostoulas, N. et al. DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows Nucleic Acids Res., 41 (2013),pp. W169-W173
    [54]
    Pasquinelli, A.E. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship Nat. Rev. Genet., 13 (2012),pp. 271-282
    [55]
    Petersen, C.P., Bordeleau, M.E., Pelletier, J. et al. Short RNAs repress translation after initiation in mammalian cells Mol. Cell, 21 (2006),pp. 533-542
    [56]
    Pincus, Z., Slack, F.J. Genome Biol., 9 (2008),p. 233
    [57]
    Pincus, Z., Smith-Vikos, T., Slack, F.J. PLoS Genet., 7 (2011)
    [58]
    Rangaraju, S., Solis, G.M., Thompson, R.C. et al. eLife, 4 (2015)
    [59]
    Seggerson, K., Tang, L., Moss, E.G. Dev. Biol., 243 (2002),pp. 215-225
    [60]
    Seo, K., Choi, E., Lee, D. et al. Aging Cell, 12 (2013),pp. 1073-1081
    [61]
    Shan, G. RNA interference as a gene knockdown technique Int. J. Biochem. Cell Biol., 42 (2010),pp. 1243-1251
    [62]
    Shu, J., Xia, Z., Li, L. et al. Dose-dependent differential mRNA target selection and regulation by let-7a-7f and miR-17-92 cluster microRNAs RNA Biol., 9 (2012),pp. 1275-1287
    [63]
    Smith-Vikos, T., Slack, F.J. MicroRNAs and their roles in aging J. Cell Sci., 125 (2012),pp. 7-17
    [64]
    Son, H.G., Seo, M., Ham, S. et al. Nat. Commun., 8 (2017),p. 14749
    [65]
    Takeda, T., Tanabe, H. Lifespan and reproduction in brain-specific miR-29-knockdown mouse Biochem. Biophys. Res. Commun., 471 (2016),pp. 454-458
    [66]
    Tao, J., Wu, Q.Y., Ma, Y.C. et al. Sci. Rep., 7 (2017),p. 43547
    [67]
    Van Wynsberghe, P.M., Chan, S.P., Slack, F.J. et al. Analysis of microRNA expression and function Methods Cell Biol., 106 (2011),pp. 219-252
    [68]
    Walhout, A.J.M. Unraveling transcription regulatory networks by protein-DNA and protein–protein interaction mapping Genome Res., 16 (2006),pp. 1445-1454
    [69]
    Whyte, W.A., Orlando, D.A., Hnisz, D. et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes Cell, 153 (2013),pp. 307-319
    [70]
    Wilkinson, D.S., Taylor, R.C., Dillin, A.
    [71]
    Wu, L., Fan, J., Belasco, J.G. MicroRNAs direct rapid deadenylation of mRNA Proc. Natl. Acad. Sci. U. S. A., 103 (2006),pp. 4034-4039
    [72]
    Yu, B., Wang, X., Wei, S. et al. Dev. Cell, 43 (2017),pp. 212-226
    [73]
    Zanotti, S., Gibertini, S., Curcio, M. et al. Opposing roles of miR-21 and miR-29 in the progression of fibrosis in Duchenne muscular dystrophy Biochim. Biophys. Acta, 1852 (2015),pp. 1451-1464
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (113) PDF downloads (4) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return