[1] |
Agarwal, V., Bell, G.W., Nam, J. et al. Predicting effective microRNA target sites in mammalian mRNAs eLife, 4 (2015)
|
[2] |
Ambros, V. The functions of animal microRNAs Nature, 431 (2004),pp. 350-355
|
[3] |
Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function Cell, 116 (2004),pp. 281-297
|
[4] |
Bartel, D.P. MicroRNAs: target recognition and regulatory functions Cell, 136 (2009),pp. 215-233
|
[5] |
Boehm, M., Slack, F. Science, 310 (2005),pp. 1954-1957
|
[6] |
Boulias, K., Horvitz, H.R. Cell Metabol., 15 (2012),pp. 439-450
|
[7] |
Bowen, R.L., Atwood, C.S. Living and dying for sex Gerontology, 50 (2004),pp. 265-290
|
[8] |
Broughton, J.P., Lovci, M.T., Huang, J.L. et al. Pairing beyond the seed supports microRNA targeting specificity Mol. Cell, 64 (2016),pp. 320-333
|
[9] |
Budovskaya, Y.V., Wu, K., Southworth, L.K. et al. Cell, 134 (2008),pp. 291-303
|
[10] |
Burke, S.L., Hammell, M., Ambros, V. Genetics, 200 (2015),pp. 1201-1218
|
[11] |
Campisi, J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors Cell, 120 (2005),pp. 513-522
|
[12] |
Cecchetelli, A.D., Cram, E.J. Regulating distal tip cell migration in space and time Mech. Dev., 148 (2017),pp. 11-17
|
[13] |
de Lencastre, A., Pincus, Z., Zhou, K. et al. Curr. Biol., 20 (2010),pp. 2159-2168
|
[14] |
Ebert, M.S., Sharp, P.A. Roles for micrornas in conferring robustness to biological processes Cell, 149 (2012),pp. 515-524
|
[15] |
Eran, E., Roy, N., Israel, S. et al. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists BMC Bioinf., 10 (2009),p. 48
|
[16] |
Griffiths-Jones, S., Saini, H.K., van Dongen, S. et al. miRBase: tools for microRNA genomics Nucleic Acids Res., 36 (2008),pp. D154-D158
|
[17] |
Guo, H., Ingolia, N.T., Weissman, J.S. et al. Mammalian microRNAs predominantly act to decrease target mRNA levels Nature, 466 (2010),pp. 835-840
|
[18] |
Halaschek-Wiener, J., Khattra, J.S., McKay, S. et al. Genome Res., 15 (2005),pp. 603-615
|
[19] |
Hammell, M., Long, D., Zhang, L. et al. mirWIP: microRNA target prediction based on microRNA-containing ribonucleoprotein-enriched transcripts Nat. Methods, 5 (2008),pp. 813-819
|
[20] |
He, F. Bio-protocol, Bio., 101 (2011),p. e47
|
[21] |
Heid, J., Cencioni, C., Ripa, R. et al. Age-dependent increase of oxidative stress regulates microRNA-29 family preserving cardiachealth Sci. Rep., 7 (2017),p. 16839
|
[22] |
Herndon, L.A., Schmeissner, P.J., Dudaronek, J.M. et al. Nature, 419 (2002),pp. 808-814
|
[23] |
Hieronymus, H., Silver, P.A. A systems view of mRNP biology Genes Dev., 18 (2004),pp. 2845-2860
|
[24] |
Hooten, N.N., Abdelmohsen, K., Gorospe, M. et al. MicroRNA expression patterns reveal differential expression of target genes with age PLoS One, 5 (2010)
|
[25] |
Hooten, N.N., Fitzpatrick, M., , De, S. et al. Age-related changes in microRNA levels in serum Aging, 5 (2013),pp. 725-740
|
[26] |
Horn, T., Boutros, M. E-RNAi: a web application for the multi-species design of RNAi reagents--2010 update Nucleic Acids Res., 38 (2010),pp. W332-W339
|
[27] |
Hsu, A.L., Murphy, C.T., Kenyon, C. Regulation of aging and age-related disease by DAF-16 and heat-shock factor Science, 300 (2003),pp. 1142-1145
|
[28] |
Huntzinger, E., Izaurralde, E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay Nat. Rev. Genet., 12 (2011),pp. 99-110
|
[29] |
Ibañez-Ventoso, C., Yang, M., Guo, S. et al. Aging Cell, 5 (2006),pp. 235-246
|
[30] |
Inukai, S., Pincus, Z., de Lencastre, A. et al. A microRNA feedback loop regulates global microRNA abundance during aging RNA, 24 (2018),pp. 159-172
|
[31] |
Johnson, D.W., Llop, J.R., Farrell, S.F. et al. PLoS Genet., 10 (2014),p. e1004278
|
[32] |
Jung, H.J., Suh, Y. MicroRNA in aging: from discovery to biology Curr. Genomics, 13 (2012),pp. 548-557
|
[33] |
Kadandale, P., Chatterjee, I., Singson, A. Germline transformation of Caenorhabditis elegans by injection Methods Mol. Biol., 518 (2009),pp. 123-133
|
[34] |
Kaletsky, R., Lakhina, V., Arey, R. et al. Nature, 529 (2015),pp. 92-96
|
[35] |
Kaul, T.K., Reis, R.P., Ogungbe, I.V. et al. PLoS One, 9 (2014)
|
[36] |
Keene, J.D., Lager, P.J. Post-transcriptional operons and regulons co-ordinating gene expression Chromosome Res., 13 (2005),pp. 327-337
|
[37] |
Krek, A., Grün, D., Poy, M.N. et al. Combinatorial microRNA target predictions Nat. Genet., 37 (2005),pp. 495-500
|
[38] |
Li, T., Yan, X., Jiang, M. et al. The comparison of microRNA profile of the dermis between the young and elderly J. Dermatol. Sci., 82 (2016),pp. 75-83
|
[39] |
Liu, H., Wang, X., Wang, H.D. et al. Nat. Commun., 3 (2012),p. 1073
|
[40] |
Lu, T., Pan, Y., Kao, S.Y. et al. Gene regulation and DNA damage in the ageing human brain Nature, 429 (2004),pp. 883-891
|
[41] |
Lucanic, M., Graham, J., Scott, G. et al. Aging, 5 (2013),pp. 394-411
|
[42] |
Ludewig, A.H., Kober-Eisermann, C., Weitzel, C. et al. Genes Dev., 18 (2004),pp. 2120-2133
|
[43] |
Lund, J., Tedesco, P., Duke, K. et al. Curr. Biol., 12 (2002),pp. 1566-1573
|
[44] |
Mann, F.G., Van Nostrand, E.L., Friedland, A.E. et al. PLoS Genet., 12 (2016)
|
[45] |
Martinez, N.J., Ow, M.C., Barrasa, I.M. et al. Genes Dev., 22 (2008),pp. 2535-2549
|
[46] |
Martinez, N.J., Ow, M.C., Reece-Hoyes, J.S. et al. Genome Res., 18 (2008),pp. 2005-2015
|
[47] |
McGeer, P.L., McGeer, E.G. Inflammation and the degenerative diseases of aging Ann. N. Y. Acad. Sci., 1035 (2004),pp. 104-116
|
[48] |
Meng, L., Chen, L., Li, Z. et al. J. Genet. Genomics, 40 (2013),pp. 445-452
|
[49] |
Miska, E.A., Alvarez-Saavedra, E., Abbott, A.L. et al. PLoS Genet., 3 (2007),p. e215
|
[50] |
Mukherji, S., Ebert, M.S., Zheng, G.X. et al. MicroRNAs can generate thresholds in target gene expression Nat. Genet., 43 (2011),pp. 854-859
|
[51] |
Narayan, N., Morenos, L., Phipson, B. et al. Functionally distinct roles for different miR-155 expression levels through contrasting effects on gene expression, in acute myeloid leukaemia Leukemia, 31 (2017),pp. 808-820
|
[52] |
Ogg, S., Paradis, S., Gottlieb, S. et al. Nature, 389 (1997),pp. 994-999
|
[53] |
Paraskevopoulou, M.D., Georgakilas, G., Kostoulas, N. et al. DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows Nucleic Acids Res., 41 (2013),pp. W169-W173
|
[54] |
Pasquinelli, A.E. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship Nat. Rev. Genet., 13 (2012),pp. 271-282
|
[55] |
Petersen, C.P., Bordeleau, M.E., Pelletier, J. et al. Short RNAs repress translation after initiation in mammalian cells Mol. Cell, 21 (2006),pp. 533-542
|
[56] |
Pincus, Z., Slack, F.J. Genome Biol., 9 (2008),p. 233
|
[57] |
Pincus, Z., Smith-Vikos, T., Slack, F.J. PLoS Genet., 7 (2011)
|
[58] |
Rangaraju, S., Solis, G.M., Thompson, R.C. et al. eLife, 4 (2015)
|
[59] |
Seggerson, K., Tang, L., Moss, E.G. Dev. Biol., 243 (2002),pp. 215-225
|
[60] |
Seo, K., Choi, E., Lee, D. et al. Aging Cell, 12 (2013),pp. 1073-1081
|
[61] |
Shan, G. RNA interference as a gene knockdown technique Int. J. Biochem. Cell Biol., 42 (2010),pp. 1243-1251
|
[62] |
Shu, J., Xia, Z., Li, L. et al. Dose-dependent differential mRNA target selection and regulation by let-7a-7f and miR-17-92 cluster microRNAs RNA Biol., 9 (2012),pp. 1275-1287
|
[63] |
Smith-Vikos, T., Slack, F.J. MicroRNAs and their roles in aging J. Cell Sci., 125 (2012),pp. 7-17
|
[64] |
Son, H.G., Seo, M., Ham, S. et al. Nat. Commun., 8 (2017),p. 14749
|
[65] |
Takeda, T., Tanabe, H. Lifespan and reproduction in brain-specific miR-29-knockdown mouse Biochem. Biophys. Res. Commun., 471 (2016),pp. 454-458
|
[66] |
Tao, J., Wu, Q.Y., Ma, Y.C. et al. Sci. Rep., 7 (2017),p. 43547
|
[67] |
Van Wynsberghe, P.M., Chan, S.P., Slack, F.J. et al. Analysis of microRNA expression and function Methods Cell Biol., 106 (2011),pp. 219-252
|
[68] |
Walhout, A.J.M. Unraveling transcription regulatory networks by protein-DNA and protein–protein interaction mapping Genome Res., 16 (2006),pp. 1445-1454
|
[69] |
Whyte, W.A., Orlando, D.A., Hnisz, D. et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes Cell, 153 (2013),pp. 307-319
|
[70] |
Wilkinson, D.S., Taylor, R.C., Dillin, A.
|
[71] |
Wu, L., Fan, J., Belasco, J.G. MicroRNAs direct rapid deadenylation of mRNA Proc. Natl. Acad. Sci. U. S. A., 103 (2006),pp. 4034-4039
|
[72] |
Yu, B., Wang, X., Wei, S. et al. Dev. Cell, 43 (2017),pp. 212-226
|
[73] |
Zanotti, S., Gibertini, S., Curcio, M. et al. Opposing roles of miR-21 and miR-29 in the progression of fibrosis in Duchenne muscular dystrophy Biochim. Biophys. Acta, 1852 (2015),pp. 1451-1464
|