5.9
CiteScore
5.9
Impact Factor
Volume 46 Issue 1
Jan.  2019
Turn off MathJax
Article Contents

Defining gene networks controlling the maintenance and function of the differentiation niche by an in vivo systematic RNAi screen

doi: 10.1016/j.jgg.2018.10.008
More Information
  • Corresponding author: E-mail address: tgx@stowers.org (Ting Xie); E-mail address: nijq@mail.tsinghua.edu.cn (Jian-Quan Ni)
  • Received Date: 2018-08-15
  • Accepted Date: 2018-10-23
  • Rev Recd Date: 2018-10-02
  • Available Online: 2019-01-30
  • Publish Date: 2019-01-20
  • In the Drosophila ovary, escort cells (ECs) extrinsically control germline stem cell (GSC) maintenance and progeny differentiation. However, the underlying mechanisms remain poorly understood. In this study, we identified 173 EC genes for their roles in controlling GSC maintenance and progeny differentiation by using an in vivo systematic RNAi approach. Of the identified genes, 10 and 163 are required in ECs to promote GSC maintenance and progeny differentiation, respectively. The genes required for progeny differentiation fall into different functional categories, including transcription, mRNA splicing, protein degradation, signal transduction and cytoskeleton regulation. In addition, the GSC progeny differentiation defects caused by defective ECs are often associated with BMP signaling elevation, indicating that preventing BMP signaling is a general functional feature of the differentiation niche. Lastly, exon junction complex (EJC) components, which are essential for mRNA splicing, are required in ECs to promote GSC progeny differentiation by maintaining ECs and preventing BMP signaling. Therefore, this study has identified the major regulators of the differentiation niche, which provides important insights into how stem cell progeny differentiation is extrinsically controlled.
  • These authors contributed equally.
  • loading
  • [1]
    Billuart, P., Winter, C.G., Maresh, A. et al. Regulating axon branch stability: the role of p190 RhoGAP in repressing a retraction signaling pathway Cell, 107 (2001),pp. 195-207
    [2]
    Casanueva, M.O., Ferguson, E.L. Development, 131 (2004),pp. 1881-1890
    [3]
    Castrillon, D.H., Wasserman, S.A. Development, 120 (1994),pp. 3367-3377
    [4]
    Chen, D.H., McKearin, D.M. Development, 130 (2003),pp. 1159-1170
    [5]
    Chen, D.H., McKearin, D. Curr. Biol., 13 (2003),pp. 1786-1791
    [6]
    Chen, S.Y., Kaneko, S., Ma, X. et al. Proc. Natl. Acad. Sci. U. S. A., 107 (2010),pp. 19939-19944
    [7]
    Decotto, E., Spradling, A.C. Dev. Cell, 9 (2005),pp. 501-510
    [8]
    DeFalco, T., Potter, S.J., Williams, A.V. et al. Macrophages contribute to the spermatogonial niche in the adult testis Cell Rep., 12 (2015),pp. 1107-1119
    [9]
    Eliazer, S., Shalaby, N.A., Buszczak, M. Proc. Natl. Acad. Sci. U. S. A., 108 (2011),pp. 7064-7069
    [10]
    Eliazer, S., Palacios, V., Wang, Z.H. et al. Lsd1 restricts the number of germline stem cells by regulating multiple targets in escort cells PLoS Genet., 10 (2014)
    [11]
    Fu, Z.W., Geng, C.Y., Wang, H. et al. Twin promotes the maintenance and differentiation of germline stem cell lineage through modulation of multiple pathways Cell Rep., 13 (2015),pp. 1366-1379
    [12]
    Fuller, M.T., Spradling, A.C. Science, 316 (2007),pp. 402-404
    [13]
    Gilboa, L., Lehmann, R. Repression of primordial germ cell differentiation parallels germ line stem cell maintenance Curr. Biol., 14 (2004),pp. 981-986
    [14]
    Hayashi, R., Handler, D., Ish-Horowicz, D. et al. Genes Dev., 28 (2014),pp. 1772-1785
    [15]
    Hudson, A.M., Cooley, L. J. Cell Biol., 156 (2002),pp. 677-687
    [16]
    Jin, Z.G., Flynt, A.S., Lai, E.C. Curr. Biol., 23 (2013),pp. 1442-1448
    [17]
    Kai, T.S., Spradling, A. Proc. Natl. Acad. Sci. U. S. A., 100 (2003),pp. 4633-4638
    [18]
    Kirilly, D., Wang, S., Xie, T. Self-maintained escort cells form a germline stem cell differentiation niche Development, 138 (2011),pp. 5087-5097
    [19]
    Konig, A., Shcherbata, H.R. Soma influences GSC progeny differentiation via the cell adhesion-mediated steroid-let-7-Wingless signaling cascade that regulates chromatin dynamics Biol. Open, 4 (2015),pp. 285-300
    [20]
    Lee, T., Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis Neuron, 22 (1999),pp. 451-461
    [21]
    Li, C.Y., Kan, L.J., Chen, Y. et al. Ci antagonizes Hippo signaling in the somatic cells of the ovary to drive germline stem cell differentiation Cell Res., 25 (2015),pp. 1152-1170
    [22]
    Li, L.H., Xie, T. Stem cell niche: structure and function Annu. Rev. Cell Dev. Biol., 21 (2005),pp. 605-631
    [23]
    Li, X.W., Yang, F., Chen, H.Y. et al. Control of germline stem cell differentiation by Polycomb and Trithorax group genes in the niche microenvironment Development, 143 (2016),pp. 3449-3458
    [24]
    Li, Y., Minor, N.T., Park, J.K. et al. Bam and Bgcn antagonize Nanos-dependent germ-line stem cell maintenance Proc. Natl. Acad. Sci. U. S. A., 106 (2009),pp. 9304-9309
    [25]
    Li, Y., Zhang, Q., Carreira-Rosario, A. et al. PLoS One, 8 (2013)
    [26]
    Lin, H., Spradling, A.C. Dev. Biol., 159 (1993),pp. 140-152
    [27]
    Lin, H., Yue, L., Spradling, A.C. Development, 120 (1994),pp. 947-956
    [28]
    Liu, M., Lim, T.M., Cai, Y. Sci. Signal., 3 (2010)
    [29]
    Liu, Z., Zhong, G.H., Chai, P.C. et al. J. Cell Biol., 211 (2015),pp. 469-484
    [30]
    Lu, T.L., Wang, S., Gao, Y. et al. Development, 142 (2015),pp. 4242-4252
    [31]
    Luo, L.C., Wang, H.S., Fan, C. et al. J. Cell Biol., 209 (2015),pp. 595-608
    [32]
    Ma, X., Wang, S., Do, T. et al. PLoS One, 9 (2014)
    [33]
    Maimon, I., Popliker, M., Gilboa, L. Without children is required for Stat-mediated zfh1 transcription and for germline stem cell differentiation Development, 141 (2014),pp. 2602-2610
    [34]
    Malone, C.D., Mestdagh, C., Akhtar, J. et al. Genes Dev., 28 (2014),pp. 1786-1799
    [35]
    Margolis, J., Spradling, A. Development, 121 (1995),pp. 3797-3807
    [36]
    McKearin, D., Ohlstein, B. Development, 121 (1995),pp. 2937-2947
    [37]
    McKearin, D.M., Spradling, A.C. Genes Dev., 4 (1990),pp. 2242-2251
    [38]
    Morris, L.X., Spradling, A.C. Development, 138 (2011),pp. 2207-2215
    [39]
    Morris, L.X., Spradling, A.C. PLoS One, 7 (2012)
    [40]
    Morrison, S.J., Spradling, A.C. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life Cell, 132 (2008),pp. 598-611
    [41]
    Mottier-Pavie, V.I., Palacios, V., Eliazer, S. et al. Dev. Biol., 417 (2016),pp. 50-62
    [42]
    Mukai, M., Kato, H., Hira, S. et al. Mech. Dev., 128 (2011),pp. 510-523
    [43]
    Ni, J.Q., Markstein, M., Binari, R. et al. Nat. Methods, 5 (2008),pp. 49-51
    [44]
    Ni, J.Q., Zhou, R., Czech, B. et al. Nat. Methods, 8 (2011),pp. 405-407
    [45]
    Nir, O., Bakal, C., Perrimon, N. et al. Inference of RhoGAP/GTPase regulation using single-cell morphological data from a combinatorial RNAi screen Genome Res., 20 (2010),pp. 372-380
    [46]
    Nowotarski, S.H., McKeon, N., Moser, R.J. et al. Mol. Biol. Cell, 25 (2014),pp. 3147-3165
    [47]
    Ohlstein, B., McKearin, D. Development, 124 (1997),pp. 3651-3662
    [48]
    Ohlstein, B., Lavoie, C.A., Vef, O. et al. Genetics, 155 (2000),pp. 1809-1819
    [49]
    Pan, L., Wang, S., Lu, T.L. et al. Protein competition switches the function of COP9 from self-renewal to differentiation Nature, 514 (2014),p. 233
    [50]
    Prokopenko, S.N., Brumby, A., O'Keefe, L. et al. Genes Dev., 13 (1999),pp. 2301-2314
    [51]
    Qiao, H.H., Wang, F., Xu, R.G. et al. Nat. Commun., 9 (2018),p. 4160
    [52]
    Schulz, C., Wood, C.G., Jones, D.L. et al. Signaling from germ cells mediated by the rhomboid homolog stet organizes encapsulation by somatic support cells Development, 129 (2002),pp. 4523-4534
    [53]
    Schumacher, S., Gryzik, T., Tannebaum, S. et al. Development, 131 (2004),pp. 2631-2640
    [54]
    Shen, R., Weng, C., Yu, J. et al. Proc. Natl. Acad. Sci. U. S. A., 106 (2009),pp. 11623-11628
    [55]
    Song, X.Q., Wong, M.D., Kawase, E. et al. Development, 131 (2004),pp. 1353-1364
    [56]
    Song, X.Q., Zhu, C.H., Doan, C. et al. Science, 296 (2002),pp. 1855-1857
    [57]
    Spradling, A.C.
    [58]
    Sun, J., Wei, H.M., Xu, J. et al. Histone H1-mediated epigenetic regulation controls germline stem cell self-renewal by modulating H4K16 acetylation Nat. Commun., 6 (2015),p. 8856
    [59]
    Van Doren, M., Williamson, A.L., Lehmann, R. Curr. Biol., 8 (1998),pp. 243-246
    [60]
    Vartiainen, M.K., Machesky, L.M. The WASP-Arp2/3 pathway: genetic insights Curr. Opin. Cell Biol., 16 (2004),pp. 174-181
    [61]
    Wang, S., Gao, Y., Song, X.Q. et al. Wnt signaling-mediated redox regulation maintains the germ line stem cell differentiation niche eLife, 4 (2015)
    [62]
    Wang, X.X., Pan, L., Wang, S. et al. Histone H3K9 trimethylase Eggless controls germline stem cell maintenance and differentiation PLoS Genet., 7 (2011)
    [63]
    Xie, T. Wiley Interdiscip. Rev. Dev. Biol., 2 (2013),pp. 261-273
    [64]
    Xie, T., Spradling, A.C. Cell, 94 (1998),pp. 251-260
    [65]
    Xie, T., Spradling, A.C. Science, 290 (2000),pp. 328-330
    [66]
    Xie, T., Spradling, A.C.
    [67]
    Yang, Z.H., Sun, J., Hu, Y.Z. et al. Dev. Biol., 424 (2017),pp. 40-49
    [68]
    Zallen, J.A., Cohen, Y., Hudson, A.M. et al. J. Cell Biol., 156 (2002),pp. 689-701
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (146) PDF downloads (8) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return