[1] |
Aizman, O., Brismar, H., Uhlen, P. et al. Anatomical and physiological evidence for D1 and D2 dopamine receptor colocalization in neostriatal neurons Nat. Neurosci., 3 (2000),pp. 226-230
|
[2] |
Alexander, G.E., Crutcher, M.D. Functional architecture of basal ganglia circuits: neural substrates of parallel processing Trends Neurosci., 13 (1990),pp. 266-271
|
[3] |
Arlotta, P., Molyneaux, B.J., Jabaudon, D. et al. Ctip2 controls the differentiation of medium spiny neurons and the establishment of the cellular architecture of the striatum J. Neurosci., 28 (2008),pp. 622-632
|
[4] |
Coffinier, C., Chang, S.Y., Nobumori, C. et al. Abnormal development of the cerebral cortex and cerebellum in the setting of lamin B2 deficiency Proc. Natl. Acad. Sci. U. S. A., 107 (2010),pp. 5076-5081
|
[5] |
Davis, M.M., Olausson, P., Greengard, P. et al. Regulator of calmodulin signaling knockout mice display anxiety-like behavior and motivational deficits Eur. J. Neurosci., 35 (2012),pp. 300-308
|
[6] |
Gangarossa, G., Espallergues, J., Mailly, P. et al. Spatial distribution of D1R- and D2R-expressing medium-sized spiny neurons differs along the rostro-caudal axis of the mouse dorsal striatum Front. Neural Circ., 7 (2013),p. 124
|
[7] |
Gerfen, C.R., Engber, T.M., Mahan, L.C. et al. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons Science, 250 (1990),pp. 1429-1432
|
[8] |
Gerfen, C.R. Molecular effects of dopamine on striatal projection pathways Trends Neurosci., 23 (2000),pp. s64-s70
|
[9] |
Gong, S., Zheng, C., Doughty, M.L. et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes Nature, 425 (2003),pp. 917-925
|
[10] |
Kreitzer, A.C., Malenka, R.C. Striatal plasticity and basal ganglia circuit function Neuron, 60 (2008),pp. 543-554
|
[11] |
Kurihara, T., Ehrlich, M.E., Horiuchi, J. et al. ARPP-21, a cyclic AMP-regulated phosphoprotein enriched in dopamine-innervated brain regions. II. Molecular cloning and nucleotide sequence J. Neurosci., 9 (1989),pp. 3638-3644
|
[12] |
Levesque, M., Parent, A. The striatofugal fiber system in primates: a reevaluation of its organization based on single-axon tracing studies Proc. Natl. Acad. Sci. U. S. A., 102 (2005),pp. 11888-11893
|
[13] |
Nair, A.G., Bhalla, U.S., Hellgren Kotaleski, J. Role of DARPP-32 and ARPP-21 in the emergence of temporal constraints on striatal calcium and dopamine integration PLoS Comput. Biol., 12 (2016)
|
[14] |
Nambu, A. Seven problems on the basal ganglia Curr. Opin. Neurobiol., 18 (2008),pp. 595-604
|
[15] |
Olsson, M., Campbell, K., Wictorin, K. et al. Projection neurons in fetal striatal transplants are predominantly derived from the lateral ganglionic eminence Neuroscience, 60 (1995),pp. 1169-1182
|
[16] |
Ouimet, C.C., , Greengard, P. ARPP-21, a cyclic AMP-regulated phosphoprotein enriched in dopamine-invervated brain regions. II. Immunocytochemical localization in rat brain J. Neurosci., 9 (1989),pp. 865-875
|
[17] |
Shuen, J.A., Chen, M., Gloss, B. et al. Drd1a-tdTomato BAC transgenic mice for simultaneous visualization of medium spiny neurons in the direct and indirect pathways of the basal ganglia J. Neurosci., 28 (2008),pp. 2681-2685
|
[18] |
Tsou, K., Girault, J.A., Greengard, P. Dopamine D1 agonist SKF 38393 increases the state of phosphorylation of ARPP-21 in substantia nigra J. Neurochem., 60 (1993),pp. 1043-1046
|
[19] |
van der Kooy, D., Fishell, G. Neuronal birthdate underlies the development of striatal compartments Brain Res., 401 (1987),pp. 155-161
|
[20] |
Wichterle, H., Turnbull, D.H., Nery, S. et al. In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain Development, 128 (2001),pp. 3759-3771
|