5.9
CiteScore
5.9
Impact Factor
Volume 45 Issue 11
Nov.  2018
Turn off MathJax
Article Contents

Retrospective and perspective of plant epigenetics in China

doi: 10.1016/j.jgg.2018.09.004
More Information
  • Corresponding author: E-mail address: cgduan@sibs.ac.cn (Cheng-Guo Duan); E-mail address: jkzhu@sibs.ac.cn (Jian-Kang Zhu); E-mail address: xfcao@genetics.ac.cn (Xiaofeng Cao)
  • Received Date: 2018-08-15
  • Accepted Date: 2018-09-30
  • Rev Recd Date: 2018-09-25
  • Available Online: 2018-11-06
  • Publish Date: 2018-11-20
  • Epigenetics refers to the study of heritable changes in gene function that do not involve changes in the DNA sequence. Such effects on cellular and physiological phenotypic traits may result from external or environmental factors or be part of normal developmental program. In eukaryotes, DNA wraps on a histone octamer (two copies of H2A, H2B, H3 and H4) to form nucleosome, the fundamental unit of chromatin. The structure of chromatin is subjected to a dynamic regulation through multiple epigenetic mechanisms, including DNA methylation, histone posttranslational modifications (PTMs), chromatin remodeling and noncoding RNAs. As conserved regulatory mechanisms in gene expression, epigenetic mechanisms participate in almost all the important biological processes ranging from basal development to environmental response. Importantly, all of the major epigenetic mechanisms in mammalians also occur in plants. Plant studies have provided numerous important contributions to the epigenetic research. For example, gene imprinting, a mechanism of parental allele-specific gene expression, was firstly observed in maize; evidence of paramutation, an epigenetic phenomenon that one allele acts in a single locus to induce a heritable change in the other allele, was firstly reported in maize and tomato. Moreover, some unique epigenetic mechanisms have been evolved in plants. For example, the 24-nt siRNA-involved RNA-directed DNA methylation (RdDM) pathway is plant-specific because of the involvements of two plant-specific DNA-dependent RNA polymerases, Pol IV and Pol V. A thorough study of epigenetic mechanisms is of great significance to improve crop agronomic traits and environmental adaptability. In this review, we make a brief summary of important progress achieved in plant epigenetics field in China over the past several decades and give a brief outlook on future research prospects. We focus our review on DNA methylation and histone PTMs, the two most important aspects of epigenetic mechanisms.
  • loading
  • [1]
    Arribas-Hernandez, L., Bressendorff, S., Hansen, M.H. et al. Plant Cell, 30 (2018),pp. 952-967
    [2]
    Barrero, J.M., Gonzalez-Bayon, R., del Pozo, J.C. et al. Plant Cell, 19 (2007),pp. 2822-2838
    [3]
    Bergman, Y., Cedar, H. DNA methylation dynamics in health and disease Nat. Struct. Mol. Biol., 20 (2013),pp. 274-281
    [4]
    Bu, Z., Yu, Y., Li, Z. et al. PLoS Genet., 10 (2014)
    [5]
    Cao, H., Li, X., Wang, Z. et al. Histone H2B monoubiquitination mediated by HISTONE MONOUBIQUITINATION1 and HISTONE MONOUBIQUITINATION2 is involved in anther development by regulating tapetum degradation-related genes in rice Plant Physiol., 168 (2015),pp. 1389-1405
    [6]
    Cao, X., Aufsatz, W., Zilberman, D. et al. Role of the DRM and CMT3 methyltransferases in RNA-directed DNA methylation Curr. Biol., 13 (2003),pp. 2212-2217
    [7]
    Cao, X., Jacobsen, S.E. Proc. Natl. Acad. Sci. U. S. A., 99 (2002),pp. 16491-16498
    [8]
    Cao, X., Springer, N.M., Muszynski, M.G. et al. Proc. Natl. Acad. Sci. U. S. A., 97 (2000),pp. 4979-4984
    [9]
    Cartagena, J.A., Matsunaga, S., Seki, M. et al. Dev. Biol., 315 (2008),pp. 355-368
    [10]
    Chanvivattana, Y., Bishopp, A., Schubert, D. et al. Development, 131 (2004),pp. 5263-5276
    [11]
    Chen, L.Q., Luo, J.H., Cui, Z.H. et al. Plant Physiol., 174 (2017),pp. 1795-1806
    [12]
    Chen, L.T., Luo, M., Wang, Y.Y. et al. J. Exp. Bot., 61 (2010),pp. 3345-3353
    [13]
    Cheng, S., Tan, F., Lu, Y. et al. WOX11 recruits a histone H3K27me3 demethylase to promote gene expression during shoot development in rice Nucleic Acids Res., 46 (2018),pp. 2356-2369
    [14]
    Choi, K., Park, C., Lee, J. et al. Development, 134 (2007),pp. 1931-1941
    [15]
    Choi, Y., Gehring, M., Johnson, L. et al. Cell, 110 (2002),pp. 33-42
    [16]
    Coustham, V., Vlad, D., Deremetz, A. et al. PLoS One, 9 (2014)
    [17]
    Cui, X., Jin, P., Cui, X. et al. Control of transposon activity by a histone H3K4 demethylase in rice Proc. Natl. Acad. Sci. U. S. A., 110 (2013),pp. 1953-1958
    [18]
    Cui, X., Liang, Z., Shen, L. et al. Mol. Plant, 10 (2017),pp. 1387-1399
    [19]
    Daccord, N., Celton, J.M., Linsmith, G. et al. Nat. Cenet., 49 (2017),pp. 1099-1106
    [20]
    Deleris, A., Halter, T., Navarro, L. DNA methylation and demethylation in plant immunity Annu. Rev. Phytopathol., 54 (2016),pp. 579-603
    [21]
    Deng, Y., Zhai, K., Xie, Z. et al. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance Science, 355 (2017),pp. 962-965
    [22]
    Devoto, A., Nieto-Rostro, M., Xie, D. et al. Plant J., 32 (2002),pp. 457-466
    [23]
    Ding, B., Bellizzi Mdel, R., Ning, Y. et al. HDT701, a histone H4 deacetylase, negatively regulates plant innate immunity by modulating histone H4 acetylation of defense-related genes in rice Plant Cell, 24 (2012),pp. 3783-3794
    [24]
    Ding, Y., Avramova, Z., Fromm, M. Plant J., 66 (2011),pp. 735-744
    [25]
    Ding, Y., Wang, X., Su, L. et al. Plant Cell, 19 (2007),pp. 9-22
    [26]
    Dong, X., Chen, J., Li, T. et al. Parent-of-origin-dependent nucleosome organization correlates with genomic imprinting in maize Genome Res., 28 (2018),pp. 1020-1028
    [27]
    Dong, X., Zhang, M., Chen, J. et al. Dynamic and antagonistic allele-specific epigenetic modifications controlling the expression of imprinted genes in maize endosperm Mol. Plant, 10 (2017),pp. 442-455
    [28]
    Dou, K., Huang, C.F., Ma, Z.Y. et al. The PRP6-like splicing factor STA1 is involved in RNA-directed DNA methylation by facilitating the production of Pol V-dependent scaffold RNAs Nucleic Acids Res., 41 (2013),pp. 8489-8502
    [29]
    Dowen, R.H., Pelizzola, M., Schmitz, R.J. et al. Widespread dynamic DNA methylation in response to biotic stress Proc. Natl. Acad. Sci. U. S. A., 109 (2012),pp. E2183-E2191
    [30]
    Du, J., Zhong, X., Bernatavichute, Y.V. et al. Dual binding of chromomethylase domains to H3K9me2-containing nucleosomes directs DNA methylation in plants Cell, 151 (2012),pp. 167-180
    [31]
    Duan, C.G., Wang, X., Tang, K. et al. PLoS Genet., 11 (2015)
    [32]
    Duan, C.G., Wang, X., Xie, S. et al. A pair of transposon-derived proteins function in a histone acetyltransferase complex for active DNA demethylation Cell Res., 27 (2017),pp. 226-240
    [33]
    Duan, C.G., Wang, X., Zhang, L. et al. Proc. Natl. Acad. Sci. U. S. A., 114 (2017),pp. E7377-E7384
    [34]
    Duan, C.G., Zhang, H., Tang, K. et al. EMBO J., 34 (2015),pp. 581-592
    [35]
    Duan, H.C., Wei, L.H., Zhang, C. et al. Plant Cell, 29 (2017),pp. 2995-3011
    [36]
    Dutta, A., Choudhary, P., Caruana, J. et al. Plant J., 91 (2017),pp. 1015-1028
    [37]
    Ebbs, M.L., Bartee, L., Bender, J. H3 lysine 9 methylation is maintained on a transcribed inverted repeat by combined action of SUVH6 and SUVH4 methyltransferases Mol. Cell. Biol., 25 (2005),pp. 10507-10515
    [38]
    Ebbs, M.L., Bender, J. Plant Cell, 18 (2006),pp. 1166-1176
    [39]
    Eulgem, T., Tsuchiya, T., Wang, X.J. et al. Plant J., 49 (2007),pp. 829-839
    [40]
    Exner, V., Aichinger, E., Shu, H. et al. PLoS One, 4 (2009),p. e5335
    [41]
    Feng, J., Chen, D., Berr, A. et al. ZRF1 chromatin regulators have Polycomb silencing and independent roles in development Plant Physiol., 172 (2016),pp. 1746-1759
    [42]
    Fu, Y., Dominissini, D., Rechavi, G. et al. Gene expression regulation mediated through reversible m(6)A RNA methylation Nat. Rev. Genet., 15 (2014),pp. 293-306
    [43]
    Fuchs, J., Demidov, D., Houben, A. et al. Chromosomal histone modification patterns-from conservation to diversity Trends Plant Sci., 11 (2006),pp. 199-208
    [44]
    Gao, L., Geng, Y., Li, B. et al. Plant Cell Environ., 33 (2010),pp. 1820-1827
    [45]
    Gao, Z., Liu, H.L., Daxinger, L. et al. An RNA polymerase II- and AGO4-associated protein acts in RNA-directed DNA methylation Nature, 465 (2010),pp. 106-109
    [46]
    Gehring, M., Choi, Y., Fischer, R.L. Imprinting and seed development Plant Cell, 16 (2004),pp. S203-S213
    [47]
    Gehring, M., Huh, J.H., Hsieh, T.F. et al. Cell, 124 (2006),pp. 495-506
    [48]
    Gong, Z., Morales-Ruiz, T., Ariza, R.R. et al. Cell, 111 (2002),pp. 803-814
    [49]
    Grossniklaus, U., Vielle-Calzada, J.P., Hoeppner, M.A. et al. Science, 280 (1998),pp. 446-450
    [50]
    Gu, X., Wang, Y., He, Y. PLoS Biol., 11 (2013)
    [51]
    Guo, L., Yu, Y., Law, J.A. et al. Proc. Natl. Acad. Sci. U. S. A., 107 (2010),pp. 18557-18562
    [52]
    Han, S.K., Sang, Y., Rodrigues, A. et al. Plant Cell, 24 (2012),pp. 4892-4906
    [53]
    He, F., Umehara, T., Saito, K. et al. Structural insight into the zinc finger CW domain as a histone modification reader Structure, 18 (2010),pp. 1127-1139
    [54]
    He, G., Chen, B., Wang, X. et al. Conservation and divergence of transcriptomic and epigenomic variation in maize hybrids Genome Biol., 14 (2013),p. R57
    [55]
    He, G., Elling, A.A., Deng, X.W. The epigenome and plant development Annu. Rev. Plant Biol., 62 (2011),pp. 411-435
    [56]
    He, X.J., Hsu, Y.F., Pontes, O. et al. NRPD4, a protein related to the RPB4 subunit of RNA polymerase II, is a component of RNA polymerases IV and V and is required for RNA-directed DNA methylation Genes Dev., 23 (2009),pp. 318-330
    [57]
    He, X.J., Hsu, Y.F., Zhu, S. et al. A conserved transcriptional regulator is required for RNA-directed DNA methylation and plant development Genes Dev., 23 (2009),pp. 2717-2722
    [58]
    He, X.J., Hsu, Y.F., Zhu, S. et al. Cell, 137 (2009),pp. 498-508
    [59]
    He, Y. Chromatin regulation of flowering Trends Plant Sci., 17 (2012),pp. 556-562
    [60]
    He, Y. Enabling photoperiodic control of flowering by timely chromatin silencing of the florigen gene Nucleus, 6 (2015),pp. 179-182
    [61]
    Hoppmann, V., Thorstensen, T., Kristiansen, P.E. et al. The CW domain, a new histone recognition module in chromatin proteins EMBO J., 30 (2011),pp. 1939-1952
    [62]
    Hou, X., Zhou, J., Liu, C. et al. Nat. Commun., 5 (2014),p. 4601
    [63]
    Hu, Y., Liu, D., Zhong, X. et al. CHD3 protein recognizes and regulates methylated histone H3 lysines 4 and 27 over a subset of targets in the rice genome Proc. Natl. Acad. Sci. U. S. A., 109 (2012),pp. 5773-5778
    [64]
    Hu, Y., Zhang, L., Zhao, L. et al. PLoS One, 6 (2011)
    [65]
    Huang, C.F., Miki, D., Tang, K. et al. PLoS Genet., 9 (2013)
    [66]
    Huang, C.F., Zhu, J.K. RNA splicing factors and RNA-directed DNA methylation Biology, 3 (2014),pp. 243-254
    [67]
    Huang, S., Li, R., Zhang, Z. et al. Nat. Cenet., 41 (2009),pp. 1275-1281
    [68]
    Jackson, J.P., Lindroth, A.M., Cao, X. et al. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase Nature, 416 (2002),pp. 556-560
    [69]
    Jacob, Y., Feng, S., LeBlanc, C.A. et al. ATXR5 and ATXR6 are H3K27 monomethyltransferases required for chromatin structure and gene silencing Nat. Struct. Mol. Biol., 16 (2009),pp. 763-768
    [70]
    Jia, J., Zhao, S., Kong, X. et al. Nature, 496 (2013),pp. 91-95
    [71]
    Jiang, D., Gu, X., He, Y. Plant Cell, 21 (2009),pp. 1733-1746
    [72]
    Jiang, D., Kong, N.C., Gu, X. et al. Arabidopsis COMPASS-like complexes mediate histone H3 lysine-4 trimethylation to control floral transition and plant development PLoS Genet., 7 (2011)
    [73]
    Jiang, D., Yang, W., He, Y. et al. Plant Cell, 19 (2007),pp. 2975-2987
    [74]
    Jiang, P., Wang, S., Jiang, H. et al. The COMPASS-like complex promotes flowering and panicle branching in rice Plant Physiol., 176 (2018),pp. 2761-2771
    [75]
    Jiang, P., Wang, S., Zheng, H. et al. New Phytol., 219 (2018),pp. 422-435
    [76]
    Jing, Y., Sun, H., Yuan, W. et al. Mol. Plant, 9 (2016),pp. 1156-1167
    [77]
    Johnson, L., Cao, X., Jacobsen, S. Interplay between two epigenetic marks. DNA methylation and histone H3 lysine 9 methylation Curr. Biol., 12 (2002),pp. 1360-1367
    [78]
    Johnson, L.M., Du, J., Hale, C.J. et al. SRA- and SET-domain-containing proteins link RNA polymerase V occupancy to DNA methylation Nature, 507 (2014),pp. 124-128
    [79]
    Kankel, M.W., Ramsey, D.E., Stokes, T.L. et al. Genetics, 163 (2003),pp. 1109-1122
    [80]
    Kanno, T., Bucher, E., Daxinger, L. et al. RNA-directed DNA methylation and plant development require an IWR1-type transcription factor EMBO Rep., 11 (2010),pp. 65-71
    [81]
    Kapoor, A., Agarwal, M., Andreucci, A. et al. Curr. Biol., 15 (2005),pp. 1912-1918
    [82]
    Kim, D.H., Sung, S. Mol. Cell, 37 (2014),pp. 841-850
    [83]
    Kim, K.C., Lai, Z., Fan, B. et al. Plant Cell, 20 (2008),pp. 2357-2371
    [84]
    Kinoshita, T., Miura, A., Choi, Y. et al. Science, 303 (2004),pp. 521-523
    [85]
    Klose, R.J., Zhang, Y. Regulation of histone methylation by demethylimination and demethylation Nat. Rev. Mol. Cell Biol., 8 (2007),pp. 307-318
    [86]
    Klutstein, M., Nejman, D., Greenfield, R. et al. DNA methylation in cancer and aging Cancer Res., 76 (2016),pp. 3446-3450
    [87]
    Lai, Y.S., Zhang, X., Zhang, W. et al. The association of changes in DNA methylation with temperature-dependent sex determination in cucumber J. Exp. Bot., 68 (2017),pp. 2899-2912
    [88]
    Lang, Z., Lei, M., Wang, X. et al. The methyl-CpG-binding protein MBD7 facilitates active DNA demethylation to limit DNA hyper-methylation and transcriptional gene silencing Mol. Cell, 57 (2015),pp. 971-983
    [89]
    Lang, Z., Wang, Y., Tang, K. et al. Critical roles of DNA demethylation in the activation of ripening-induced genes and inhibition of ripening-repressed genes in tomato fruit Proc. Natl. Acad. Sci. U. S. A., 114 (2017),pp. E4511-E4519
    [90]
    Law, J.A., Ausin, I., Johnson, L.M. et al. Curr. Biol., 20 (2010),pp. 951-956
    [91]
    Law, J.A., Du, J., Hale, C.J. et al. Polymerase IV occupancy at RNA-directed DNA methylation sites requires SHH1 Nature, 498 (2013),pp. 385-389
    [92]
    Law, J.A., Jacobsen, S.E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals Nat. Rev. Genet., 11 (2010),pp. 204-220
    [93]
    Law, J.A., Vashisht, A.A., Wohlschlegel, J.A. et al. SHH1, a homeodomain protein required for DNA methylation, as well as RDR2, RDM4, and chromatin remodeling factors, associate with RNA polymerase IV PLoS Genet., 7 (2011)
    [94]
    Le, T.N., Schumann, U., Smith, N.A. et al. Genome Biol., 15 (2014),p. 458
    [95]
    Lee, W.Y., Lee, D., Chung, W.I. et al. Plant J., 58 (2009),pp. 511-524
    [96]
    Lei, M., La, H., Lu, K. et al. Proc. Natl. Acad. Sci. U. S. A., 111 (2014),pp. 527-532
    [97]
    Lei, M., Zhang, H., Julian, R. et al. Proc. Natl. Acad. Sci. U. S. A., 112 (2015),pp. 3553-3557
    [98]
    Li, C., Chen, C., Gao, L. et al. PLoS Genet., 11 (2015)
    [99]
    Li, C., Liu, Y., Shen, W.H. et al. Chromatin-remodeling factor OsINO80 is involved in regulation of gibberellin biosynthesis and is crucial for rice plant growth and development J. Integr. Plant Biol., 60 (2018),pp. 144-159
    [100]
    Li, H., He, Z., Lu, G. et al. Plant Cell, 19 (2007),pp. 2403-2416
    [101]
    Li, J., Huang, Q., Sun, M. et al. Sci. Rep., 6 (2016),p. 38401
    [102]
    Li, T., Chen, X., Zhong, X. et al. Jumonji C domain protein JMJ705-mediated removal of histone H3 lysine 27 trimethylation is involved in defense-related gene activation in rice Plant Cell, 25 (2013),pp. 4725-4736
    [103]
    Li, W., Liu, H., Cheng, Z.J. et al. PLoS Genet., 7 (2011)
    [104]
    Li, X., Qian, W., Zhao, Y. et al. Proc. Natl. Acad. Sci. U. S. A., 109 (2012),pp. 11425-11430
    [105]
    Li, X., Wang, X., He, K. et al. High-resolution mapping of epigenetic modifications of the rice genome uncovers interplay between DNA methylation, histone methylation, and gene expression Plant Cell, 20 (2008),pp. 259-276
    [106]
    Li, Y., Cordoba-Canero, D., Qian, W. et al. PLoS Genet., 11 (2015)
    [107]
    Li, Y., Duan, C.G., Zhu, X. et al. Cell Res., 25 (2015),pp. 757-760
    [108]
    Li, Z., Jiang, D., Fu, X. et al. Coupling of histone methylation and RNA processing by the nuclear mRNA cap-binding complex Nat. Plants, 2 (2016),p. 16015
    [109]
    Liang, Y.K., Wang, Y., Zhang, Y. et al. J. Exp. Bot., 54 (2003),pp. 1995-1996
    [110]
    Liang, Z., Shen, L., Cui, X. et al. Dev. Cell, 45 (2018),pp. 406-416
    [111]
    Ling, H.Q., Ma, B., Shi, X. et al. Nature, 557 (2018),pp. 424-428
    [112]
    Ling, H.Q., Zhao, S., Liu, D. et al. Nature, 496 (2013),pp. 87-90
    [113]
    Liu, B., Wei, G., Shi, J. et al. New Phytol., 210 (2016),pp. 577-588
    [114]
    Liu, C., Lu, F., Cui, X. et al. Histone methylation in higher plants Annu. Rev. Plant Biol., 61 (2010),pp. 395-420
    [115]
    Liu, F., Quesada, V., Crevillen, P. et al. Mol. Cell, 28 (2007),pp. 398-407
    [116]
    Liu, H., Ma, L., Yang, X. et al. Integrative analysis of DNA methylation, mRNAs, and small RNAs during maize embryo dedifferentiation BMC Plant Biol., 17 (2017),p. 105
    [117]
    Liu, J., Ren, X., Yin, H. et al. Plant J., 61 (2010),pp. 36-45
    [118]
    Liu, J., Tang, X., Gao, L. et al. A role of tomato UV-damaged DNA binding protein 1 (DDB1) in organ size control via an epigenetic manner PLoS One, 7 (2012)
    [119]
    Liu, K., Yu, Y., Dong, A. et al. New Phytol., 215 (2017),pp. 609-623
    [120]
    Liu, Q., Wang, J., Miki, D. et al. Plant Cell, 22 (2010),pp. 2336-2352
    [121]
    Liu, S., Yu, Y., Ruan, Y. et al. Plant SET- and RING-associated domain proteins in heterochromatinization Plant J., 52 (2007),pp. 914-926
    [122]
    Liu, T., Li, Y., Duan, W. et al. J. Exp. Bot., 68 (2017),pp. 1213-1224
    [123]
    Liu, T.T., Zhu, D., Chen, W. et al. Mol. Plant, 6 (2013),pp. 830-846
    [124]
    Liu, X., Luo, M., Zhang, W. et al. BMC Plant Biol., 12 (2012),p. 145
    [125]
    Liu, X., Yang, Y., Hu, Y. et al. Temporal-specific interaction of NF-YC and CURLY LEAF during the floral transition regulates flowering Plant Physiol., 177 (2018),pp. 105-114
    [126]
    Liu, X., Zhou, C., Zhao, Y. et al. Front. Plant Sci., 5 (2014),p. 591
    [127]
    Liu, X., Zhou, S., Wang, W. et al. Regulation of histone methylation and reprogramming of gene expression in the rice inflorescence meristem Plant Cell, 27 (2015),pp. 1428-1444
    [128]
    Liu, Y., Huang, Y. J. Biol. Chem., 293 (2018),pp. 6470-6481
    [129]
    Liu, Y., Min, J. Structure and function of histone methylation-binding proteins in plants Biochem. J., 473 (2016),pp. 1663-1680
    [130]
    Liu, Y., Tempel, W., Zhang, Q. et al. Family-wide characterization of histone binding abilities of human CW domain-containing proteins J. Biol. Chem., 291 (2016),pp. 9000-9013
    [131]
    Liu, Y., Zhang, A., Yin, H. et al. Trithorax-group proteins ARABIDOPSIS TRITHORAX4 (ATX4) and ATX5 function in abscisic acid and dehydration stress responses New Phytol., 217 (2018),pp. 1582-1597
    [132]
    Liu, Z.W., Shao, C.R., Zhang, C.J. et al. The SET domain proteins SUVH2 and SUVH9 are required for Pol V occupancy at RNA-directed DNA methylation loci PLoS Genet., 10 (2014)
    [133]
    Lopez-Gonzalez, L., Mouriz, A., Narro-Diego, L. et al. Plant Cell, 26 (2014),pp. 3922-3938
    [134]
    Lu, F., Cui, X., Zhang, S. et al. Nat. Cenet., 43 (2011),pp. 715-719
    [135]
    Lu, F., Cui, X., Zhang, S. et al. Cell Res., 20 (2010),pp. 387-390
    [136]
    Lu, F., Li, G., Cui, X. et al. J. Integr. Plant Biol., 50 (2008),pp. 886-896
    [137]
    Lu, X., Wang, X., Chen, X. et al. BMC Genomics, 18 (2017),p. 297
    [138]
    Lu, Y., Rong, T., Cao, M. Analysis of DNA methylation in different maize tissues J. Genet. Genomics, 35 (2008),pp. 41-48
    [139]
    Luo, G.Z., MacQueen, A., Zheng, G. et al. Nat. Commun., 5 (2014),p. 5630
    [140]
    Luo, M., Bilodeau, P., Koltunow, A. et al. Proc. Natl. Acad. Sci. U. S. A., 96 (1999),pp. 296-301
    [141]
    Luo, M., Platten, D., Chaudhury, A. et al. Expression, imprinting, and evolution of rice homologs of the polycomb group genes Mol. Plant, 2 (2009),pp. 711-723
    [142]
    Luo, M., Tai, R., Yu, C.W. et al. Plant J., 82 (2015),pp. 925-936
    [143]
    Luo, M., Wang, Y.Y., Liu, X. et al. J. Exp. Bot., 63 (2012),pp. 3297-3306
    [144]
    Ma, Y., Min, L., Wang, M. et al. Disrupted genome methylation in response to high temperature has distinct affects on microspore abortion and anther indehiscence Plant Cell, 30 (2018),pp. 1387-1403
    [145]
    Martinez-Macias, M.I., Qian, W., Miki, D. et al. Mol. Cell, 45 (2012),pp. 357-370
    [146]
    McCue, A.D., Panda, K., Nuthikattu, S. et al. ARGONAUTE 6 bridges transposable element mRNA-derived siRNAs to the establishment of DNA methylation EMBO J., 34 (2015),pp. 20-35
    [147]
    Mi, S., Cai, T., Hu, Y. et al. Cell, 133 (2008),pp. 116-127
    [148]
    Migicovsky, Z., Kovalchuk, I. Changes to DNA methylation and homologous recombination frequency in the progeny of stressed plants Biochem. Cell Biol., 91 (2013),pp. 1-5
    [149]
    Ming, R., Hou, S., Feng, Y. et al. Nature, 452 (2008),pp. 991-996
    [150]
    Ong-Abdullah, M., Ordway, J.M., Jiang, N. et al. Nature, 525 (2015),pp. 533-537
    [151]
    Pien, S., Fleury, D., Mylne, J.S. et al. Plant Cell, 20 (2008),pp. 580-588
    [152]
    Potato Genome Sequencing, C., Xu, X., Pan, S. et al. Genome sequence and analysis of the tuber crop potato Nature, 475 (2011),pp. 189-195
    [153]
    Qian, S., Lv, X., Scheid, R.N. et al. Dual recognition of H3K4me3 and H3K27me3 by a plant histone reader SHL Nat. Commun., 9 (2018),p. 2425
    [154]
    Qian, W., Miki, D., Lei, M. et al. Mol. Cell, 55 (2014),pp. 361-371
    [155]
    Qian, W., Miki, D., Zhang, H. et al. Science, 336 (2012),pp. 1445-1448
    [156]
    Rigal, M., Kevei, Z., Pelissier, T. et al. DNA methylation in an intron of the IBM1 histone demethylase gene stabilizes chromatin modification patterns EMBO J., 31 (2012),pp. 2981-2993
    [157]
    Saleh, A., Alvarez-Venegas, R., Yilmaz, M. et al. Plant Cell, 20 (2008),pp. 568-579
    [158]
    Saze, H., Kitayama, J., Takashima, K. et al. Nat. Commun., 4 (2013),p. 2301
    [159]
    Saze, H., Shiraishi, A., Miura, A. et al. Science, 319 (2008),pp. 462-465
    [160]
    Schonrock, N., Bouveret, R., Leroy, O. et al. Genes Dev., 20 (2006),pp. 1667-1678
    [161]
    Schubert, D., Primavesi, L., Bishopp, A. et al. Silencing by plant Polycomb-group genes requires dispersed trimethylation of histone H3 at lysine 27 EMBO J., 25 (2006),pp. 4638-4649
    [162]
    Scutenaire, J., Deragon, J.M., Jean, V. et al. Plant Cell, 30 (2018),pp. 986-1005
    [163]
    Shen, H., He, H., Li, J. et al. Plant Cell, 24 (2012),pp. 875-892
    [164]
    Shen, L., Liang, Z., Gu, X. et al. Dev. Cell, 38 (2016),pp. 186-200
    [165]
    Shen, W.H. NtSET1, a member of a newly identified subgroup of plant SET-domain-containing proteins, is chromatin-associated and its ectopic overexpression inhibits tobacco plant growth Plant J., 28 (2001),pp. 371-383
    [166]
    Shen, Y., Conde, E.S.N., Audonnet, L. et al. Front. Plant Sci., 5 (2014),p. 290
    [167]
    Slotkin, R.K., Martienssen, R. Transposable elements and the epigenetic regulation of the genome Nat. Rev. Genet., 8 (2007),pp. 272-285
    [168]
    Song, Q., Guan, X., Chen, Z.J. Dynamic roles for small RNAs and DNA methylation during ovule and fiber development in allotetraploid cotton PLoS Genet., 11 (2015)
    [169]
    Song, Z.T., Sun, L., Lu, S.J. et al. Transcription factor interaction with COMPASS-like complex regulates histone H3K4 trimethylation for specific gene expression in plants Proc. Natl. Acad. Sci. U. S. A., 112 (2015),pp. 2900-2905
    [170]
    Spedaletti, V., Polticelli, F., Capodaglio, V. et al. Biochemistry, 47 (2008),pp. 4936-4947
    [171]
    Stroud, H., Do, T., Du, J. et al. Nat. Struct. Mol. Biol., 21 (2014),pp. 64-72
    [172]
    Su, Y., Wang, S., Zhang, F. et al. Phosphorylation of histone H2A at serine 95: a plant-specific mark involved in flowering time regulation and H2A.Z deposition Plant Cell, 29 (2017),pp. 2197-2213
    [173]
    Sui, P., Jin, J., Ye, S. et al. H3K36 methylation is critical for brassinosteroid-regulated plant growth and development in rice Plant J., 70 (2012),pp. 340-347
    [174]
    Sun, Q., Zhou, D.X. Proc. Natl. Acad. Sci. U. S. A., 105 (2008),pp. 13679-13684
    [175]
    Tamada, Y., Yun, J.Y., Woo, S.C. et al. Plant Cell, 21 (2009),pp. 3257-3269
    [176]
    Tang, K., Lang, Z., Zhang, H. et al. The DNA demethylase ROS1 targets genomic regions with distinct chromatin modifications Nat. Plants, 2 (2016),p. 16169
    [177]
    Tao, Z., Shen, L., Gu, X. et al. Embryonic epigenetic reprogramming by a pioneer transcription factor in plants Nature, 551 (2017),pp. 124-128
    [178]
    Telias, A., Lin-Wang, K., Stevenson, D.E. et al. BMC Plant Biol., 11 (2011),p. 93
    [179]
    Thorstensen, T., Fischer, A., Sandvik, S.V. et al. Nucleic Acids Res., 34 (2006),pp. 5461-5470
    [180]
    To, T.K., Saze, H., Kakutani, T. DNA methylation within transcribed regions Plant Physiol., 168 (2015),pp. 1219-1225
    [181]
    Tsuchiya, T., Eulgem, T. Proc. Natl. Acad. Sci. U. S. A., 110 (2013),pp. E3535-E3543
    [182]
    Turck, F., Roudier, F., Farrona, S. et al. PLoS Genet., 3 (2007),p. e86
    [183]
    Wang, D., Tyson, M.D., Jackson, S.S. et al. Proc. Natl. Acad. Sci. U. S. A., 103 (2006),pp. 13244-13249
    [184]
    Wang, J., Hu, J., Qian, Q. et al. Mol. Plant, 6 (2013),pp. 514-527
    [185]
    Wang, L., Xie, J., Hu, J. et al. Comparative epigenomics reveals evolution of duplicated genes in potato and tomato Plant J., 93 (2018),pp. 460-471
    [186]
    Wang, M., Qin, L., Xie, C. et al. Induced and constitutive DNA methylation in a salinity-tolerant wheat introgression line Plant Cell Physiol., 55 (2014),pp. 1354-1365
    [187]
    Wang, X., Duan, C.G., Tang, K. et al. Proc. Natl. Acad. Sci. U. S. A., 110 (2013),pp. 15467-15472
    [188]
    Wang, X., Wang, H., Wang, J. et al. Nat. Cenet., 43 (2011),pp. 1035-1039
    [189]
    Wang, Y., Fan, X., Lin, F. et al. Proc. Natl. Acad. Sci. U. S. A., 111 (2014),pp. 10359-10364
    [190]
    Wang, Y., Liu, J., Xia, R. et al. EMBO Rep., 8 (2007),pp. 77-83
    [191]
    Wang, Y., Wang, X., Deng, W. et al. Mol. Plant, 7 (2014),pp. 514-527
    [192]
    Wang, Z., Patel, D.J. Combinatorial readout of dual histone modifications by paired chromatin-associated modules J. Biol. Chem., 286 (2011),pp. 18363-18368
    [193]
    Wei, L.H., Song, P., Wang, Y. et al. Plant Cell, 30 (2018),pp. 968-985
    [194]
    Wu, H.J., Wang, Z.M., Wang, M. et al. Widespread long noncoding RNAs as endogenous target mimics for microRNAs in plants Plant Physiol., 161 (2013),pp. 1875-1884
    [195]
    Wu, J., Wang, Z., Shi, Z. et al. Genome Res., 23 (2013),pp. 396-408
    [196]
    Xia, R., Wang, J., Liu, C. et al. Plant Cell, 18 (2006),pp. 85-103
    [197]
    Xia, S., Cheng, Y.T., Huang, S. et al. Plant Physiol., 162 (2013),pp. 1694-1705
    [198]
    Xiong, L.Z., Xu, C.G., Saghai Maroof, M.A. et al. Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique Mol. Gen. Genet., 261 (1999),pp. 439-446
    [199]
    Xu, F., Kuo, T., Rosli, Y. et al. Mol. Plant, 11 (2018),pp. 659-677
    [200]
    Xu, J., Wang, X., Cao, H. et al. Dynamic changes in methylome and transcriptome patterns in response to methyltransferase inhibitor 5-azacytidine treatment in citrus DNA Res., 24 (2017),pp. 509-522
    [201]
    Xu, L., Zhao, Z., Dong, A. et al. Mol. Cell. Biol., 28 (2008),pp. 1348-1360
    [202]
    Xu, R., Wang, Y., Zheng, H. et al. J. Exp. Bot., 66 (2015),pp. 5997-6008
    [203]
    Xu, Y., Zhong, L., Wu, X. et al. Planta, 229 (2009),pp. 471-483
    [204]
    Yamamuro, C., Miki, D., Zheng, Z. et al. Nat. Commun., 5 (2014),p. 4062
    [205]
    Yan, D., Zhang, X., Zhang, L. et al. Plant J., 82 (2015),pp. 12-24
    [206]
    Yang, D.L., Zhang, G., Tang, K. et al. Cell Res., 26 (2016),pp. 66-82
    [207]
    Yang, H., Han, Z., Cao, Y. et al. PLoS Genet., 8 (2012)
    [208]
    Yang, H., Mo, H., Fan, D. et al. Plant Cell Rep., 31 (2012),pp. 1297-1308
    [209]
    Yang, M., Wang, X., Huang, H. et al. J. Integr. Plant Biol., 58 (2016),pp. 466-474
    [210]
    Yang, Z., Qiu, Q., Chen, W. et al. Plant Cell, 30 (2018),pp. 167-177
    [211]
    Ye, R., Chen, Z., Lian, B. et al. Mol. Cell, 61 (2016),pp. 222-235
    [212]
    Ye, R., Wang, W., Iki, T. et al. Mol. Cell, 46 (2012),pp. 859-870
    [213]
    Yin, H., Zhang, X., Liu, J. et al. Plant Cell, 21 (2009),pp. 386-402
    [214]
    Yu, A., Lepere, G., Jay, F. et al. Proc. Natl. Acad. Sci. U. S. A., 110 (2013),pp. 2389-2394
    [215]
    Yu, X., Li, L., Li, L. et al. Proc. Natl. Acad. Sci. U. S. A., 105 (2008),pp. 7618-7623
    [216]
    Yu, X., Meng, X., Liu, Y. et al. The chromatin remodeler ZmCHB101 impacts expression of osmotic stress-responsive genes in maize Plant Mol. Biol., 97 (2018),pp. 451-465
    [217]
    Yuan, W., Luo, X., Li, Z. et al. Nat. Cenet., 48 (2016),pp. 1527-1534
    [218]
    Zhai, J., Bischof, S., Wang, H. et al. A one precursor one siRNA model for Pol IV-dependent siRNA biogenesis Cell, 163 (2015),pp. 445-455
    [219]
    Zhang, B., Tieman, D.M., Jiao, C. et al. Chilling-induced tomato flavor loss is associated with altered volatile synthesis and transient changes in DNA methylation Proc. Natl. Acad. Sci. U. S. A., 113 (2016),pp. 12580-12585
    [220]
    Zhang, C.J., Zhou, J.X., Liu, J. et al. EMBO J., 32 (2013),pp. 1128-1140
    [221]
    Zhang, H., Ma, Z.Y., Zeng, L. et al. DTF1 is a core component of RNA-directed DNA methylation and may assist in the recruitment of Pol IV Proc. Natl. Acad. Sci. U. S. A., 110 (2013),pp. 8290-8295
    [222]
    Zhang, M., Xie, S., Dong, X. et al. Genome-wide high resolution parental-specific DNA and histone methylation maps uncover patterns of imprinting regulation in maize Genome Res., 24 (2014),pp. 167-176
    [223]
    Zhang, M., Zhao, H., Xie, S. et al. Extensive, clustered parental imprinting of protein-coding and noncoding RNAs in developing maize endosperm Proc. Natl. Acad. Sci. U. S. A., 108 (2011),pp. 20042-20047
    [224]
    Zhang, Q., Wang, D., Lang, Z. et al. Proc. Natl. Acad. Sci. U. S. A., 113 (2016),pp. E4248-E4256
    [225]
    Zhang, X., Clarenz, O., Cokus, S. et al. PLoS Biol., 5 (2007),p. e129
    [226]
    Zhang, X., Germann, S., Blus, B.J. et al. Nat. Struct. Mol. Biol., 14 (2007),pp. 869-871
    [227]
    Zhang, X., Sun, J., Cao, X. et al. Plant Physiol., 169 (2015),pp. 2118-2128
    [228]
    Zhang, Y.C., Liao, J.Y., Li, Z.Y. et al. Genome-wide screening and functional analysis identify a large number of long noncoding RNAs involved in the sexual reproduction of rice Genome Biol., 15 (2014),p. 512
    [229]
    Zhao, L., Cai, H., Su, Z. et al. Proc. Natl. Acad. Sci. U. S. A., 115 (2018),pp. E526-E535
    [230]
    Zhao, Y., Xie, S., Li, X. et al. Plant Cell, 26 (2014),pp. 2660-2675
    [231]
    Zhao, Z., Shen, W.H. Plants contain a high number of proteins showing sequence similarity to the animal SUV39H family of histone methyltransferases Ann. N. Y. Acad. Sci., 1030 (2004),pp. 661-669
    [232]
    Zhao, Z., Yu, Y., Meyer, D. et al. Nat. Cell Biol., 7 (2005),pp. 1256-1260
    [233]
    Zheng, M., Wang, Y., Wang, Y. et al. New Phytol., 206 (2015),pp. 1476-1490
    [234]
    Zheng, X., Zhu, J., Kapoor, A. et al. EMBO J., 26 (2007),pp. 1691-1701
    [235]
    Zhong, S., Fei, Z., Chen, Y.R. et al. Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening Nat. Biotechnol., 31 (2013),pp. 154-159
    [236]
    Zhong, X., Du, J., Hale, C.J. et al. Cell, 157 (2014),pp. 1050-1060
    [237]
    Zhou, C., Zhang, L., Duan, J. et al. Plant Cell, 17 (2005),pp. 1196-1204
    [238]
    Zhou, S., Liu, X., Zhou, C. et al. Cooperation between the H3K27me3 chromatin mark and non-CG methylation in epigenetic regulation Plant Physiol., 172 (2016),pp. 1131-1141
    [239]
    Zhu, J.K. Active DNA demethylation mediated by DNA glycosylases Annu. Rev. Genet., 43 (2009),pp. 143-166
    [240]
    Zhu, Y., Rowley, M.J., Bohmdorfer, G. et al. A SWI/SNF chromatin-remodeling complex acts in noncoding RNA-mediated transcriptional silencing Mol. Cell, 49 (2013),pp. 298-309
    [241]
    Zhu, Z., An, F., Feng, Y. et al. Proc. Natl. Acad. Sci. U. S. A., 108 (2011),pp. 12539-12544
    [242]
    Zilberman, D., Cao, X., Jacobsen, S.E. Science, 299 (2003),pp. 716-719
    [243]
    Zilberman, D., Gehring, M., Tran, R.K. et al. Nat. Genet., 39 (2007),pp. 61-69
    [244]
    Zong, W., Zhong, X., You, J. et al. Genome-wide profiling of histone H3K4-tri-methylation and gene expression in rice under drought stress Plant Mol. Biol., 81 (2013),pp. 175-188
    [245]
    Zou, C., Chen, A., Xiao, L. et al. A high-quality genome assembly of quinoa provides insights into the molecular basis of salt bladder-based salinity tolerance and the exceptional nutritional value Cell Res., 27 (2017),pp. 1327-1340
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (106) PDF downloads (7) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return