[1] |
Akiyoshi, S., Inoue, H., Hanai, J. et al. c-Ski acts as a transcriptional co-repressor in transforming growth factor-beta signaling through interaction with Smads J. Biol. Chem., 274 (1999),pp. 35269-35277
|
[2] |
Chan, H.M., La Thangue, N.B. p300/CBP proteins: HATs for transcriptional bridges and scaffolds J. Cell Sci., 114 (2001),pp. 2363-2373
|
[3] |
Dai, F., Lin, X., Chang, C. et al. Nuclear export of Smad2 and Smad3 by RanBP3 facilitates termination of TGF-beta signaling Dev. Cell, 16 (2009),pp. 345-357
|
[4] |
Datta, P.K., Blake, M.C., Moses, H.L. Regulation of plasminogen activator inhibitor-1 expression by transforming growth factor-beta -induced physical and functional interactions between Smads and Sp1 J. Biol. Chem., 275 (2000),pp. 40014-40019
|
[5] |
Datto, M.B., Hu, P.P., Kowalik, T.F. et al. The viral oncoprotein E1A blocks transforming growth factor beta-mediated induction of p21/WAF1/Cip1 and p15/INK4B Mol. Cell. Biol., 17 (1997),pp. 2030-2037
|
[6] |
Datto, M.B., Li, Y., Panus, J.F. et al. Transforming growth factor beta induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism Proc. Natl. Acad. Sci. U. S. A., 92 (1995),pp. 5545-5549
|
[7] |
David, C.J., Massague, J. Contextual determinants of TGFbeta action in development, immunity and cancer Nat. Rev. Mol. Cell Biol., 19 (2018),pp. 419-435
|
[8] |
Dennler, S., Itoh, S., Vivien, D. et al. Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene EMBO J., 17 (1998),pp. 3091-3100
|
[9] |
Derynck, R., Akhurst, R.J., Balmain, A. TGF-beta signaling in tumor suppression and cancer progression Nat. Genet., 29 (2001),pp. 117-129
|
[10] |
Derynck, R., Feng, X.H. TGF-beta receptor signaling Biochim. Biophys. Acta, 1333 (1997),pp. F105-F150
|
[11] |
Derynck, R., Zhang, Y.E. Smad-dependent and Smad-independent pathways in TGF-beta family signalling Nature, 425 (2003),pp. 577-584
|
[12] |
Elliott, R.L., Blobe, G.C. Role of transforming growth factor beta in human cancer J. Clin. Oncol., 23 (2005),pp. 2078-2093
|
[13] |
Feng, X.H., Derynck, R. Specificity and versatility in TGF-beta signaling through Smads Annu. Rev. Cell Dev. Biol., 21 (2005),pp. 659-693
|
[14] |
Feng, X.H., Liang, Y.Y., Liang, M. et al. Direct interaction of c-Myc with Smad2 and Smad3 to inhibit TGF-beta-mediated induction of the CDK inhibitor p15(Ink4B) Mol. Cell, 9 (2002),pp. 133-143
|
[15] |
Feng, X.H., Zhang, Y., Wu, R.Y. et al. The tumor suppressor Smad4/DPC4 and transcriptional adaptor CBP/p300 are coactivators for Smad3 in TGF-beta-induced transcriptional activation Genes Dev., 12 (1998),pp. 2153-2163
|
[16] |
Gu, S., Liu, Y., Zhu, B. et al. Loss of alpha-tubulin acetylation is associated with TGF-beta-induced epithelial-mesenchymal transition J. Biol. Chem., 291 (2016),pp. 5396-5405
|
[17] |
Gupta, G.P., Massague, J. Cancer metastasis: building a framework Cell, 127 (2006),pp. 679-695
|
[18] |
Hanahan, D., Weinberg, R.A. Hallmarks of cancer: the next generation Cell, 144 (2011),pp. 646-674
|
[19] |
Hannon, G.J., Beach, D. Nature, 371 (1994),pp. 257-261
|
[20] |
Heldin, C.H., Miyazono, K., ten Dijke, P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins Nature, 390 (1997),pp. 465-471
|
[21] |
Hill, C.S. Curr. Opin. Genet. Dev., 11 (2001),pp. 533-540
|
[22] |
Hiraishi, N., Ishida, Y., Nagahama, M. AAA-ATPase NVL2 acts on MTR4-exosome complex to dissociate the nucleolar protein WDR74 Biochem. Biophys. Res. Commun., 467 (2015),pp. 534-540
|
[23] |
Hiraishi, N., Ishida, Y.I., Sudo, H. et al. WDR74 participates in an early cleavage of the pre-rRNA processing pathway in cooperation with the nucleolar AAA-ATPase NVL2 Biochem. Biophys. Res. Commun., 495 (2018),pp. 116-123
|
[24] |
Inman, G.J., Nicolas, F.J., Hill, C.S. Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-beta receptor activity Mol. Cell, 10 (2002),pp. 283-294
|
[25] |
Inui, M., Manfrin, A., Mamidi, A. et al. USP15 is a deubiquitylating enzyme for receptor-activated SMADs Nat. Cell Biol., 13 (2011),pp. 1368-1375
|
[26] |
Keeton, M.R., Curriden, S.A., van Zonneveld, A.J. et al. Identification of regulatory sequences in the type 1 plasminogen activator inhibitor gene responsive to transforming growth factor beta J. Biol. Chem., 266 (1991),pp. 23048-23052
|
[27] |
Krol, M., Polanska, J., Pawlowski, K.M. et al. Transcriptomic signature of cell lines isolated from canine mammary adenocarcinoma metastases to lungs J. Appl. Genet., 51 (2010),pp. 37-50
|
[28] |
Laping, N.J., Grygielko, E., Mathur, A. et al. Inhibition of transforming growth factor (TGF)-beta1-induced extracellular matrix with a novel inhibitor of the TGF-beta type I receptor kinase activity: SB-431542 Mol. Pharmacol., 62 (2002),pp. 58-64
|
[29] |
Lin, X., Duan, X., Liang, Y.Y. et al. PPM1A functions as a smad phosphatase to terminate TGFbeta signaling Cell, 125 (2006),pp. 915-928
|
[30] |
Lin, X., Liang, M., Feng, X.H. Smurf2 is a ubiquitin E3 ligase mediating proteasome-dependent degradation of Smad2 in transforming growth factor-beta signaling J. Biol. Chem., 275 (2000),pp. 36818-36822
|
[31] |
Liu, T., Zhao, M., Liu, J. et al. Tumor suppressor bromodomain-containing protein 7 cooperates with Smads to promote transforming growth factor-beta responses Oncogene, 36 (2017),pp. 362-372
|
[32] |
Lo, Y.H., Romes, E.M., Pillon, M.C. et al. Structural analysis reveals features of ribosome assembly factor Nsa1/WDR74 important for localization and interaction with Rix7/NVL2 Structure, 25 (2017),pp. 762-772 e764
|
[33] |
Maserati, M., Walentuk, M., Dai, X. et al. Wdr74 is required for blastocyst formation in the mouse PloS One, 6 (2011)
|
[34] |
Massague, J. TGF-beta signal transduction Annu. Rev. Biochem., 67 (1998),pp. 753-791
|
[35] |
Massague, J. TGFbeta in cancer Cell, 134 (2008),pp. 215-230
|
[36] |
Massague, J. TGFbeta signalling in context Nat. Rev. Mol. Cell Biol., 13 (2012),pp. 616-630
|
[37] |
Neer, E.J., Schmidt, C.J., Nambudripad, R. et al. The ancient regulatory-protein family of WD-repeat proteins Nature, 371 (1994),pp. 297-300
|
[38] |
Stirnimann, C.U., Petsalaki, E., Russell, R.B. et al. WD40 proteins propel cellular networks Trends Biochem. Sci., 35 (2010),pp. 565-574
|
[39] |
Stroschein, S.L., Wang, W., Luo, K. Cooperative binding of Smad proteins to two adjacent DNA elements in the plasminogen activator inhibitor-1 promoter mediates transforming growth factor beta-induced smad-dependent transcriptional activation J. Biol. Chem., 274 (1999),pp. 9431-9441
|
[40] |
Thiery, J.P., Acloque, H., Huang, R.Y. et al. Epithelial-mesenchymal transitions in development and disease Cell, 139 (2009),pp. 871-890
|
[41] |
Wang, D., Long, J., Dai, F. et al. BCL6 represses Smad signaling in transforming growth factor-beta resistance Cancer Res., 68 (2008),pp. 783-789
|
[42] |
Whitman, M. Smads and early developmental signaling by the TGFbeta superfamily Genes Dev., 12 (1998),pp. 2445-2462
|
[43] |
Wotton, D., Lo, R.S., Lee, S. et al. A Smad transcriptional corepressor Cell, 97 (1999),pp. 29-39
|
[44] |
Xu, C., Min, J. Structure and function of WD40 domain proteins Protein Cell, 2 (2011),pp. 202-214
|
[45] |
Xu, P., Lin, X., Feng, X.H. Posttranslational regulation of Smads Cold Spring Harb. Perspect. Biol., 8 (2016)
|
[46] |
Yang, J., Weinberg, R.A. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis Dev. Cell, 14 (2008),pp. 818-829
|