5.9
CiteScore
5.9
Impact Factor
Volume 45 Issue 9
Sep.  2018
Turn off MathJax
Article Contents

Characterization of a novel regulatory pathway for mannitol metabolism and its coordination with biofilm formation in Mycobacterium smegmatis

doi: 10.1016/j.jgg.2018.06.007
More Information
  • Corresponding author: E-mail address: hezhengguo@mail.hzau.edu.cn (Zheng-Guo He)
  • Received Date: 2018-05-01
  • Accepted Date: 2018-06-26
  • Available Online: 2018-09-07
  • Publish Date: 2018-09-20
  • Biofilm formation has been implicated to be tightly regulated in bacteria. Mycobacterial species possess a unique cell-wall structure; however, the underlying regulation mechanism for their biofilm formation remains largely unclear. In this study, we characterized a hypothetical mannitol metabolism and transportation gene cluster (Ms5571–Ms5576), designated as mmt operon, whose expression significantly contributes to the biofilm formation in Mycobacterium smegmatis. We showed that in the operon the Ms5575 gene encodes a GntR-like transcriptional repressor and the Ms5576 gene encodes a mannitol 2-dehydrogenase which can produce D-mannitol from D-mannose. Strikingly, the D-mannitol molecule can derepress the negative regulation of Ms5575 on the mmt operon to stimulate the operon's expression. Consistently, addition of D-mannitol into the medium can obviously induce mycobacterial biofilm formation. Furthermore, we found that Ms0179 positively regulates the mmt operon through its downstream regulator Ms0180. Ms0180 directly binds themmt operon to positively regulate its expression. Both Ms0179 and Ms0180 significantly affect the mycobacterial biofilm formation. Taken together, we explored a regulatory pathway for the mannitol metabolism and its coordination with the biofilm formation in M. smegmatis. This finding provides novel insights into the unique mechanism of biofilm formation regulation in mycobacteria.
  • loading
  • [1]
    Barraud, N., Buson, A., Jarolimek, W. et al. PLoS One, 8 (2013)
    [2]
    Barry, C.E., Mdluli, K. Drug sensitivity and environmental adaptation of mycobacterial cell wall components Trends Microbiol., 4 (1996),pp. 275-281
    [3]
    Brennan, M.J. Infect. Immun., 85 (2017)
    [4]
    Brennan, P.J., Nikaido, H. The envelope of mycobacteria Annu. Rev. Biochem., 64 (1995),pp. 29-63
    [5]
    Brinkman, C.L., Schmidt-Malan, S.M., Karau, M.J. et al. Exposure of bacterial biofilms to electrical current leads to cell death mediated in part by reactive oxygen species PLoS One, 11 (2016)
    [6]
    Byer, T., Wang, J., Zhang, M.G. et al. Microbiology, 163 (2017),pp. 1902-1911
    [7]
    Chen, J.M., German, G.J., Alexander, D.C. et al. J. Bacteriol., 188 (2006),pp. 633-641
    [8]
    Costerton, J.W., Lewandowski, Z., Caldwell, D.E. et al. Microbial biofilms Annu. Rev. Microbiol., 49 (1995),pp. 711-745
    [9]
    Denman, C.C., Brown, A.R. Microbiology, 159 (2013),pp. 771-781
    [10]
    Donlan, R.M., Costerton, J.W. Biofilms: survival mechanisms of clinically relevant microorganisms Clin. Microbiol. Rev., 15 (2002),pp. 167-193
    [11]
    Eagen, W.J., Baumoel, L.R., Osman, S. et al. FEMS Microbiol. Lett., 365 (2018)
    [12]
    Flemming, H.C., Neu, T.R., Wozniak, D.J. The EPS matrix: the "house of biofilm cells" J. Bacteriol., 189 (2007),pp. 7945-7947
    [13]
    Goldstein, I.J., Hamilton, J.K., Huffman, G.W. et al. Reduction of the products of periodate oxidation of carbohydrates. XII. Methylation studies on cellulose polyalcohol J. Org. Chem., 27 (1962),pp. 3962-3964
    [14]
    Groisillier, A., Labourel, A., Michel, G. et al. Appl. Environ. Microbiol., 81 (2015),pp. 1799-1812
    [15]
    Gupta, K.R., Baloni, P., Indi, S.S. et al. J. Bacteriol., 198 (2016),pp. 1414-1422
    [16]
    Hobley, L., Harkins, C., MacPhee, C.E. et al. Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes FEMS Microbiol. Rev., 39 (2015),pp. 649-669
    [17]
    Hong, X., Hopfinger, A.J. Biomacromolecules, 5 (2004),pp. 1052-1065
    [18]
    Hu, J., Zhao, L., Yang, M. A GntR family transcription factor positively regulates mycobacterial isoniazid resistance by controlling the expression of a putative permease BMC Microbiol., 15 (2015),p. 214
    [19]
    Jennings, D.B., Ehrenshaft, M., Pharr, D.M. et al. Roles for mannitol and mannitol dehydrogenase in active oxygen-mediated plant defense Proc. Natl. Acad. Sci. U. S. A., 95 (1998),pp. 15129-15133
    [20]
    Krahulec, S., Armao, G.C., Bubner, P. et al. Chem. Biol. Interact., 178 (2009),pp. 274-282
    [21]
    Kumar, Y.L., Nadh, R.V., Radhakrishnamurti, P.S. Substrate inhibition: oxidation of D-sorbitol and D-mannitol by potassium periodate in alkaline medium Russ. J. Phys. Chem., 88 (2014),pp. 774-778
    [22]
    Li, W., He, Z.G. Nucleic Acids Res., 40 (2012),pp. 11292-11307
    [23]
    Li, W., Li, M., Hu, L. et al. HpoR, a novel c-di-GMP effective transcription factor, links the second messenger's regulatory function to the mycobacterial antioxidant defense Nucleic Acids Res., 46 (2018),pp. 3595-3611
    [24]
    Lin Chua, S., Liu, Y., Li, Y. et al. Front. Cell. Infect. Microbiol., 7 (2017),p. 451
    [25]
    Meena, M., Prasad, V., Zehra, A. et al. Mannitol metabolism during pathogenic fungal-host interactions under stressed conditions Front. Microbiol., 6 (2015),p. 1019
    [26]
    Miller, M.B., Bassler, B.L. Quorum sensing in bacteria Annu. Rev. Microbiol., 55 (2001),pp. 165-199
    [27]
    Mortazavi, A., Williams, B.A., McCue, K. et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq Nat. Methods, 5 (2008),pp. 621-628
    [28]
    Murugan, K., Selvanayaki, K., Al-Sohaibani, S. Urinary catheter indwelling clinical pathogen biofilm formation, exopolysaccharide characterization and their growth influencing parameters Saudi J. Biol. Sci., 23 (2016),pp. 150-159
    [29]
    Nakano, M.M., Yang, F., Hardin, P. et al. J. Bacteriol., 177 (1995),pp. 573-579
    [30]
    Nguyen, K.T., Piastro, K., Gray, T.A. et al. J. Bacteriol., 192 (2010),pp. 5134-5142
    [31]
    Ojha, A., Anand, M., Bhatt, A. et al. GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria Cell, 123 (2005),pp. 861-873
    [32]
    Ojha, A.K., Baughn, A.D., Sambandan, D. et al. Mol. Microbiol., 69 (2008),pp. 164-174
    [33]
    Pacheco, S.A., Hsu, F.F., Powers, K.M. et al. J. Biol. Chem., 288 (2013),pp. 24213-24222
    [34]
    Peterson, B.W., He, Y., Ren, Y. et al. Viscoelasticity of biofilms and their recalcitrance to mechanical and chemical challenges FEMS Microbiol. Rev., 39 (2015),pp. 234-245
    [35]
    Price, K.E., Orazi, G., Ruoff, K.L. et al. PLoS One, 10 (2015)
    [36]
    Primm, T.P., Lucero, C.A., Health impacts of environmental mycobacteria Clin. Microbiol. Rev., 17 (2004),pp. 98-106
    [37]
    Recht, J., Martínez, A., Torello, S. et al. J. Bacteriol., 182 (2000),pp. 4348-4351
    [38]
    Rinaldo, S., Giardina, G., Mantoni, F. et al. Beyond nitrogen metabolism: nitric oxide, cyclic-di-GMP and bacterial biofilms FEMS Microbiol. Lett., 365 (2018)
    [39]
    Robinson, J.C., Rostami, N., Casement, J. et al. Mol. Oral. Microbiol., 33 (2017),pp. 143-154
    [40]
    Roriz, C.L., Barros, L., Carvalho, A.M. et al. HPLC-profiles of tocopherols, sugars, and organic acids in three medicinal plants consumed as infusions Int. J. Food Sci., 2014 (2014),p. 241481
    [41]
    Slatner, M., Nidetzky, B., Kulbe, K.D. Biochemistry, 38 (1999),pp. 10489-10498
    [42]
    Snapper, S.B., Melton, R.E., Mustafa, S. et al. Mol. Microbiol., 4 (1990),pp. 1911-1919
    [43]
    Trivedi, A., Mavi, P.S., Bhatt, D. et al. Nat. Commun., 7 (2016),p. 11392
    [44]
    Vaccari, L., Molaei, M., Niepa, T.H.R. et al. Films of bacteria at interfaces Adv. Colloid Interface Sci., 247 (2017),pp. 561-572
    [45]
    Valentini, M., Filloux, A. J. Biol. Chem., 291 (2016),pp. 12547-12555
    [46]
    van Wyk, N., Navarro, D., Blaise, M. et al. Characterization of a mycobacterial cellulase and its impact on biofilm- and drug-induced cellulose production Glycobiology, 27 (2017),pp. 392-399
    [47]
    Vargas, D., Hageman, S., Gulati, M. et al. IUBMB Life, 68 (2016),pp. 621-628
    [48]
    Wang, F., Sambandan, D., Halder, R. et al. Identification of a small molecule with activity against drug-resistant and persistent tuberculosis Proc. Natl. Acad. Sci. U. S. A., 110 (2013),pp. E2510-E2517
    [49]
    World Health Organization (WHO)
    [50]
    Wright, C.C., Hsu, F.F., Arnett, E. et al. Infect. Immun., 85 (2017)
    [51]
    Yang, M., Gao, C., Cui, T. et al. Nucleic Acids Res., 40 (2012),pp. 1009-1020
    [52]
    Yang, M., Gao, C.H., Hu, J. et al. Sci. Rep., 5 (2015),p. 13969
    [53]
    Yang, Y., Thomas, J., Li, Y. et al. Defining a temporal order of genetic requirements for development of mycobacterial biofilms Mol. Microbiol., 105 (2017),pp. 794-809
    [54]
    Ye, Y., Yang, Q., Fang, F. et al. BMC Vet. Res., 11 (2015),p. 214
    [55]
    Ymele-Leki, P., Houot, L., Watnick, P.I. Appl. Environ. Microbiol., 79 (2013),pp. 4675-4683
    [56]
    Zahid, N., Deppenmeier, U. Appl. Microbiol. Biotechnol., 100 (2016),pp. 9967-9978
    [57]
    Zhao, R., Song, Y., Dai, Q. et al. Sci. Rep., 7 (2017),p. 639
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (72) PDF downloads (2) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return