[1] |
Abrahams, G.L., Kumar, A., Savvi, S. et al. Chem. Biol., 19 (2012),pp. 844-854
|
[2] |
Ahmed, W., Menon, S., Godbole, A.A. et al. FEMS Microbiol. Lett., 353 (2014),pp. 116-123
|
[3] |
Albert, H., Trollip, A., Mole, R. et al. Rapid indication of multidrug-resistant tuberculosis from liquid cultures using FASTPlaqueTB-RIF™, a manual phage-based test Int. J. Tubercul. Lung Dis., 6 (2002),pp. 523-528
|
[4] |
Alcaide, F., Galí, N., Domínguez, J. et al. Usefulness of a new mycobacteriophage-based technique for rapid diagnosis of pulmonary tuberculosis J. Clin. Microbiol., 41 (2003),pp. 2867-2871
|
[5] |
Aldovini, A., Young, R.A. Humoral and cell-mediated immune responses to live recombinant BCG-HIV vaccines Nature, 351 (1991),pp. 479-482
|
[6] |
Ali, A., Hasan, Z., McNerney, R. et al. PLoS One, 10 (2015)
|
[7] |
Anderson, L.F., Tamne, S., Brown, T. et al. Transmission of multidrug-resistant tuberculosis in the UK: a cross-sectional molecular and epidemiological study of clustering and contact tracing Lancet Infect. Dis., 14 (2014),pp. 406-415
|
[8] |
Ando, H., Lemire, S., Pires, D.P. et al. Engineering modular viral scaffolds for targeted bacterial population editing Cell Syst., 23 (2015),pp. 187-196
|
[9] |
Andries, K., Verhasselt, P., Guillemont, J. et al. Science, 307 (2005),pp. 223-227
|
[10] |
Armitige, L.Y., Jagannath, C., Wanger, A.R. et al. Infect. Immun., 68 (2000),pp. 767-778
|
[11] |
Bachrach, G., Colston, M.J., Bercovier, H. et al. Microbiology, 146 (2000),pp. 297-303
|
[12] |
Balasubramanian, V., Pavelka, M.S., Bardarov, S.S. et al. J. Bacteriol., 178 (1996),pp. 273-279
|
[13] |
Banaiee, N., January, V., Barthus, C. et al. Tuberculosis, 88 (2008),pp. 64-68
|
[14] |
Barczak, A.K., Avraham, R., Singh, S. et al. PLoS Pathog., 13 (2017)
|
[15] |
Bardarov, S., Kriakov, J., Carriere, C. et al. Proc. Natl. Acad. Sci. U. S. A., 94 (1997),pp. 10961-10966
|
[16] |
Bardarov, S., , , Sambandamurthy, V., Larsen, M. et al. Microbiology, 148 (2002),pp. 3007-3017
|
[17] |
Barkan, D., Stallings, C.L., Glickman, M.S. Gene, 470 (2011),pp. 31-36
|
[18] |
Baulard, A., Escuyer, V., Haddad, N. et al. Mercury resistance as a selective marker for recombinant mycobacteria Microbiology, 141 (1995),pp. 1045-1050
|
[19] |
Berens, C. Gene expression by tetracyclines. Constraints of resistance regulation in bacteria shape TetR for application in eukaryotes Eur. J. Biochem., 15 (2003),pp. 3109-3121
|
[20] |
Berney, M., Hartman, T.E., Jacobs, W.R. mBio, 5 (2014),p. e01275-14
|
[21] |
Berthet, F.X., Lagranderie, M., Gounon, P. et al. Science, 282 (1998),pp. 759-762
|
[22] |
Beste, D.J., Espasa, M., Bonde, B. et al. The genetic requirements for fast and slow growth in mycobacteria PLoS One, 4 (2009),p. e5349
|
[23] |
Bibb, L.A., Hatfull, G.F. Mol. Microbiol., 45 (2002),pp. 1515-1526
|
[24] |
Bibb, L.A., Hancox, M.I., Hatfull, G.F. Integration and excision by the large serine recombinase φRv1 integrase Mol. Microbiol., 55 (2005),pp. 1896-1910
|
[25] |
Bikard, D., Euler, C.W., Jiang, W. et al. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials Nat. Biotchnol., 32 (2014),pp. 1146-1150
|
[26] |
Bjorn-Mortensen, K., Zallet, J., Lillebaek, T. et al. J. Clin. Microbiol., 53 (2015),pp. 2716-2719
|
[27] |
Blokpoel, M.C., Murphy, H.N., O'toole, R. et al. Tetracycline-inducible gene regulation in mycobacteria Nucleic Acids Res., 33 (2005),p. e22
|
[28] |
Boldrin, F., Casonato, S., Dainese, E. et al. Development of a repressible mycobacterial promoter system based on two transcriptional repressors Nucleic Acids Res., 38 (2010)
|
[29] |
Botella, L., Vaubourgeix, J., Livny, J. et al. Nat. Commun., 8 (2017),p. 14731
|
[30] |
Böttger, E.C. Resistance to drugs targeting protein synthesis in mycobacteria Trends Microbiol., 2 (1994),pp. 416-421
|
[31] |
Bowman, B.U., Amos, W.T., Geer, J.C. Am. Rev. Respir. Dis., 105 (1972),pp. 85-94
|
[32] |
Brecik, M., Centárová, I., Mukherjee, R. et al. DprE1 is a vulnerable tuberculosis drug target due to its cell wall localization ACS Chem. Biol., 10 (2015),pp. 1631-1636
|
[33] |
Broxmeyer, L., Sosnowska, D., Miltner, E. et al. J. Infect. Dis., 186 (2002),pp. 1155-1160
|
[34] |
Camacho, L.R., Ensergueix, D., Perez, E. et al. Mol. Microbiol., 34 (1999),pp. 257-267
|
[35] |
Carroll, P., Muttucumaru, D.N., Parish, T. Appl. Environ. Microbiol., 71 (2005),pp. 3077-3084
|
[36] |
Carroll, P., Faray-Kele, M.C., Parish, T. Appl. Environ. Microbiol., 77 (2011),pp. 5040-5043
|
[37] |
Casali, N., Nikolayevskyy, V., Balabanova, Y. et al. Evolution and transmission of drug-resistant tuberculosis in a Russian population Nat. Genet., 46 (2014),pp. 279-286
|
[38] |
Cascioferro, A., Boldrin, F., Serafini, A. et al. Xer site-specific recombination, an efficient tool to introduce unmarked deletions into mycobacteria Appl. Environ. Microbiol., 76 (2010),pp. 5312-5316
|
[39] |
Chandolia, A., Rathor, N., Sharma, M. et al. Microbiol. Res., 169 (2014),pp. 780-787
|
[40] |
Choudhary, E., Thakur, P., Pareek, M. et al. Gene silencing by CRISPR interference in mycobacteria Nat. Commun., 6 (2015),p. 6267
|
[41] |
Cole, S., Brosch, R., Parkhill, J. et al. Nature, 393 (1998),pp. 537-544
|
[42] |
Collins, D.M., Stephens, D.M. FEMS Microbiol. Lett., 83 (1991),pp. 11-16
|
[43] |
Colman, R.E., Anderson, J., Lemmer, D. et al. J. Clin. Microbiol., 54 (2016),pp. 2058-2067
|
[44] |
Consaul, S.A., FEMS Microbiol. Lett., 234 (2004),pp. 297-301
|
[45] |
Cox, J.S., Chen, B., McNeil, M. et al. Nature, 402 (1999),pp. 79-83
|
[46] |
da Silva, J.L., Piuri, M., Broussard, G. et al. Application of BRED technology to construct recombinant D29 reporter phage expressing EGFP FEMS Microbiol. Lett., 344 (2013),pp. 166-172
|
[47] |
Darwin, K.H., Ehrt, S., Gutierrez-Ramos, J.C. et al. Science, 302 (2003),pp. 1963-1966
|
[48] |
Das Gupta, S.K., Bashyam, M.D., Tyagi, A.K. Cloning and assessment of mycobacterial promoters by using a plasmid shuttle vector J. Bacteriol., 175 (1993),pp. 5186-5192
|
[49] |
David, H.L., Clavel, S., Clement, F. Adsorption and grow of the bacteriophage D29 in selected mycobacteria Ann. Inst. Past. Virol., 131 (1980),pp. 167-184
|
[50] |
Deboosère, N., Iantomasi, R., Queval, C.J. et al. Cell Microbiol., 19 (2017)
|
[51] |
Degiacomi, G., Benjak, A., Madacki, J. et al. Sci. Rep., 7 (2017),p. 43495
|
[52] |
DeJesus, M.A., Gerrick, E.R., Xu, W. et al. mBio, 8 (2017),p. e02133-16
|
[53] |
Demidov, V.V., Potaman, V.N., Frank-Kamenetskil, M.D. et al. Stability of peptide nucleic acids in human serum and cellular extracts Biochem. Pharmacol., 48 (1994),pp. 1310-1313
|
[54] |
Deol, P., Vohra, R., Saini, A.K. et al. J. Bacteriol., 187 (2005),pp. 3415-3420
|
[55] |
Dhar, N., McKinney, J.D. Proc. Natl. Acad. Sci. U. S. A., 107 (2010),pp. 12275-12280
|
[56] |
Donnelly-Wu, M.K., Jacobs, W.R., Hatfull, G.F. Superinfection immunity of mycobacteriophage L5: applications for genetic transformation of mycobacteria Mol. Microbiol., 7 (1993),pp. 407-417
|
[57] |
Dos Vultos, T., Méderlé, I., Abadie, V. et al. BMC Mol. Biol., 7 (2006),p. 47
|
[58] |
Dusthackeer, A., Kumar, V., Subbian, S. et al. Construction and evaluation of luciferase reporter phages for the detection of active and non-replicating tubercle bacilli J. Microbiol. Meth., 73 (2008),pp. 18-25
|
[59] |
Dusthackeer, V.N.A., Balaji, S., Gomathi, N.S. et al. Diagnostic luciferase reporter phage assay for active and non-replicating persistors to detect tubercle bacilli from sputum samples Clin. Microbiol. Infect., 18 (2012),pp. 492-496
|
[60] |
Dutta, N.K., Mehra, S., Didier, P.J. et al. Genetic requirements for the survival of tubercle bacilli in primates J. Infect. Dis., 201 (2010),pp. 1743-1752
|
[61] |
Dutta, N.K., Bandyopadhyay, N., Veeramani, B. et al. mBio, 5 (2014),p. e01066-13
|
[62] |
Ehrt, S., Guo, X.V., Hickey, C.M. et al. Controlling gene expression in mycobacteria with anhydrotetracycline and Tet repressor Nucleic Acids Res., 33 (2005),p. e21
|
[63] |
Eldholm, V., Norheim, G., von der Lippe, B. et al. Genome Biol., 15 (2014),p. 490
|
[64] |
Elghraoui, A., Modlin, S.J., Valafar, F. BMC Genomics, 18 (2017),p. 302
|
[65] |
Fang, G., Munera, D., Friedman, D.I. et al. Nat. Biotechnol., 30 (2012),pp. 1232-1239
|
[66] |
Flusberg, B.A., Webster, D.R., Lee, J.H. et al. Direct detection of DNA methylation during single-molecule, real-time sequencing Nat. Methods, 7 (2010),pp. 461-465
|
[67] |
Folcher, M., Morris, R.P., Dale, G. et al. J. Biol. Chem., 276 (2001),pp. 1479-1485
|
[68] |
Fomenkov, A., Vincze, T., Degtyarev, S.K. et al. Genome Announc., 5 (2017)
|
[69] |
Forrellad, M.A., Bianco, M.V., Blanco, F.C. et al. BMC Microbiol., 13 (2013),p. 200
|
[70] |
Forti, F., Crosta, A., Ghisotti, D. Pristinamycin-inducible gene regulation in mycobacteria J. Biotechnol., 140 (2009),pp. 270-277
|
[71] |
Froman, S., Will, D.W., Bogen, E. Am. J. Public Health Nation's Health, 44 (1954),pp. 1326-1333
|
[72] |
Fu, X., Ding, M., Zhang, N. et al. Mol. Med. Rep., 12 (2015),pp. 13-19
|
[73] |
Fuller, T.E., Martin, S., Teel, J.F. et al. Microb. Pathog., 29 (2000),pp. 39-51
|
[74] |
Galagan, J.E. Genomic insights into tuberculosis Nat. Rev. Genet., 15 (2014),pp. 307-320
|
[75] |
Gandhi, N.R., Moll, A., Sturm, A.W. et al. Extensively drug-resistant tuberculosis as a cause of death in patients co-infected with tuberculosis and HIV in a rural area of South Africa Lancet, 368 (2006),pp. 1575-1580
|
[76] |
Gandotra, S., Schnappinger, D., Monteleone, M. et al. Nat. Med., 13 (2007),pp. 1515-1520
|
[77] |
Garbe, T.R., Barathi, J., Barnini, S. et al. Transformation of mycobacterial species using hygromycin resistance as selectable marker Microbiology, 140 (1994),pp. 133-138
|
[78] |
Gardner, G.M., Weiser, R.S. Proc. Soc. Exp. Biol. Med., 66 (1947),pp. 205-206
|
[79] |
Goh, S., Stach, J., Good, L. Antisense effects of PNAs in bacteria Meth. Mol. Biol., 1050 (2014),pp. 223-236
|
[80] |
Gomez, A., Andreu, N., Ferrer-Navarro, M. et al. Sci. Rep., 6 (2016),p. 26221
|
[81] |
Gordhan, B.G., Smith, D.A., Alderton, H. et al. Infect. Immun., 70 (2002),pp. 3080-3084
|
[82] |
Gormley, E.P., Davies, J. J. Bacteriol., 173 (1991),pp. 6705-6708
|
[83] |
Gouzy, A., Larrouy-Maumus, G., Bottai, D. et al. PLoS Pathog., 10 (2014)
|
[84] |
Greendyke, R., Rajagopalan, M., Parish, T. et al. Microbiology, 148 (2002),pp. 3887-3900
|
[85] |
Griffin, J.E., Gawronski, J.D., DeJesus, M.A. et al. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism PLoS Pathog., 7 (2011)
|
[86] |
Guilhot, C., Gicquel, B., Davies, J. et al. Mol. Microbiol., 6 (1992),pp. 107-113
|
[87] |
Guilhot, C., Otal, I., Van Rompaey, I. et al. J. Bacteriol., 176 (1994),pp. 535-539
|
[88] |
Guo, X.V., Monteleone, M., Klotzsche, M. et al. J. Bacteriol., 189 (2007),pp. 4614-4623
|
[89] |
Gutka, H.J., Wang, Y., Franzblau, S.G. et al. PLoS One, 10 (2015)
|
[90] |
Hameed, H.M., Islam, M.M., Chhotaray, C. et al. Molecular targets related drug resistance mechanisms in MDR-, XDR-, and TDR-Mycobacterium tuberculosis strains Front. Cell. Infect. Microbiol., 8 (2018),p. 114
|
[91] |
Harth, G., Zamecnik, P.C., Tabatadze, D. et al. Proc. Natl. Acad. Sci. U. S. A., 104 (2007),pp. 7199-7204
|
[92] |
Hatfull, G.F. Genetic transformation of mycobacteria TIM, 1 (1993),pp. 310-314
|
[93] |
Hatfull, G.F.
|
[94] |
Hauduroy, P., Rosset, W. Tentative de traitement des hamsters inoculés avec le BCG par un bactériophage Ann. Inst. Pasteur., 104 (1963),pp. 419-420
|
[95] |
Hensel, M., Shea, J.E., Gleeson, C. et al. Simultaneous identification of bacterial virulence genes by negative selection Science, 269 (1995),pp. 400-403
|
[96] |
Hernandez-Abanto, S.M., Woolwine, S.C., Jain, S.K. et al. Tetracycline-inducible gene expression in mycobacteria within an animal host using modified Streptomyces tcp830 regulatory elements Arch. Microbiol., 186 (2006),pp. 459-464
|
[97] |
Hernandez-Abanto, S.M., Cheng, Q.J., Singh, P. et al. J. Infect. Dis., 195 (2007),pp. 1634-1642
|
[98] |
Hillen, W., Berens, C. Mechanisms underlying expression of Tn10 encoded tetracycline resistance Annu. Rev. Microbiol., 48 (1994),pp. 345-369
|
[99] |
Hinds, J., Mahenthiralingam, E., Kempsell, K.E. et al. Enhanced gene replacement in mycobacteria Microbiology, 145 (1999),pp. 519-527
|
[100] |
Hisert, K.B., Kirksey, M.A., Gomez, J.E. et al. Infect. Immun., 72 (2004),pp. 5315-5321
|
[101] |
Hong, P.C., Tsolis, R.M., Ficht, T.A. Infect. Immun., 68 (2000),pp. 4102-4117
|
[102] |
Howard, N.S., Gomez, J.E., Ko, C. et al. Gene, 166 (1995),pp. 181-182
|
[103] |
Hsu, T., Hingley-Wilson, S.M., Chen, B. et al. The primary mechanism of attenuation of bacillus Calmette-Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue Proc. Natl. Acad. Sci. U. S. A., 100 (2003),pp. 12420-12425
|
[104] |
Huff, J., Czyz, A., Landick, R. et al. Taking phage integration to the next level as a genetic tool for mycobacteria Gene, 468 (2010),pp. 8-19
|
[105] |
Ioerger, T.R., Koo, S., No, E.G. et al. Genome analysis of multi-and extensively-drug-resistant tuberculosis from KwaZulu-Natal, South Africa PLoS One, 4 (2009)
|
[106] |
Islam, M.M., Hameed, H.A., Mugweru, J. et al. Drug resistance mechanisms and novel drug targets for tuberculosis therapy J. Genet. Genomics, 44 (2017),pp. 21-37
|
[107] |
Jacobs, W.R., Tuckman, M., Bloom, B.R. Introduction of foreign DNA into mycobacteria using a shuttle phasmid Nature, 327 (1987),pp. 532-535
|
[108] |
Jacobs, W.R., Barletta, R.G., Udani, R. et al. Science, 260 (1993),pp. 819-822
|
[109] |
Jagannathan, V., Kaur, P., Datta, S. PLoS One, 5 (2010)
|
[110] |
Jain, P., Hsu, T., Arai, M. et al. mBio, 5 (2014),p. e01245-14
|
[111] |
Jeanes, C., O'Grady, J. Diagnosing tuberculosis in the 21st century-Dawn of a genomics revolution? Int. J. Mycobacteriol., 5 (2016),pp. 384-391
|
[112] |
Jia, X., Yang, L., Dong, M. et al. Front. Cell. Infect. Microbiol., 7 (2017),p. 88
|
[113] |
Jinek, M., Chylinski, K., Fonfara, I. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity Science, 337 (2012),pp. 816-821
|
[114] |
Jucker, M.T., Falkinham, J.O. Epidemiology of infection by nontuberculous mycobacteria Am. Rev. Respir. Dis., 142 (1990),pp. 858-862
|
[115] |
Kalpana, G.V., Bloom, B.R., Jacobs, W.R. Insertional mutagenesis and illegitimate recombination in mycobacteria Proc. Natl. Acad. Sci. U. S. A., 88 (1991),pp. 5433-5437
|
[116] |
Kandasamy, S., Narayanan, S. Microbiol. Res., 170 (2015),pp. 255-262
|
[117] |
Kaur, P., Agarwal, S., Datta, S. Delineating bacteriostatic and bactericidal targets in mycobacteria using IPTG inducible antisense expression PLoS One, 4 (2009)
|
[118] |
Kaur, P., Datta, S., Shandil, R.K. et al. Unravelling the secrets of mycobacterial cidality through the lens of antisense PLoS One, 11 (2016)
|
[119] |
Khan, M.Z., Bhaskar, A., Upadhyay, S. et al. J. Biol. Chem., 292 (2017),pp. 16093-16108
|
[120] |
Kieser, K.J., Baranowski, C., Chao, M.C. et al. Proc. Natl. Acad. Sci. U. S. A., 112 (2015),pp. 13087-13092
|
[121] |
Kim, J.H., Wei, J.R., Wallach, J.B. et al. Protein inactivation in mycobacteria by controlled proteolysis and its application to deplete the beta subunit of RNA polymerase Nucleic Acids Res., 39 (2011),pp. 2210-2220
|
[122] |
Kim, J.H., O'Brien, K.M., Sharma, R. et al. A genetic strategy to identify targets for the development of drugs that prevent bacterial persistence Proc. Natl. Acad. Sci. U. S. A., 110 (2013),pp. 19095-19100
|
[123] |
Kolly, G.S., Boldrin, F., Sala, C. et al. Mol. Microbiol., 92 (2014),pp. 194-211
|
[124] |
Korte, J., Alber, M., Trujillo, C.M. et al. PLoS Pathog., 12 (2016)
|
[125] |
Krebes, J., Morgan, R.D., Bunk, B. et al. Nucleic Acids Res., 42 (2014),pp. 2415-2432
|
[126] |
Kumar, V., Loganathan, P., Sivaramakrishnan, G. et al. Characterization of temperate phage Che12 and construction of a new tool for diagnosis of tuberculosis Tuberculosis, 88 (2008),pp. 616-623
|
[127] |
Labidi, A., David, H.L., Roulland-Dussoix, D. Ann. Inst. Past. Microbiol., 136B (1985),pp. 209-215
|
[128] |
Lamichhane, G., Zignol, M., Blades, N.J. et al. Proc. Natl. Acad. Sci. U. S. A., 100 (2003),pp. 7213-7218
|
[129] |
Lazraq, R., Clavel-Sérès, S., David, H.L. Curr. Microbiol., 22 (1991),pp. 9-13
|
[130] |
Le Chevalier, F., Cascioferro, A., Frigui, W. et al. Sci. Rep., 5 (2015),p. 16918
|
[131] |
Leão, S.C., Matsumoto, C.K., Carneiro, A. et al. PLoS One, 8 (2013)
|
[132] |
Leblanc, C., Prudhomme, T., Tabouret, G. et al. PLoS Pathog., 8 (2012)
|
[133] |
Lee, M.H., Pascopella, L., Jacobs, W.R. et al. Proc. Natl. Acad. Sci. U. S. A., 88 (1991),pp. 3111-3115
|
[134] |
Lee, B.Y., Clemens, D.L., Horwitz, M.A. Mol. Microbiol., 68 (2008),pp. 1047-1060
|
[135] |
Lee, H., Gurtowski, J., Yoo, S. et al. Third-generation sequencing and the future of genomics BioRxiv (2016)
|
[136] |
Leung, K.S.S., Siu, G.K.H., Tam, K.K.G. et al. Front. Cell. Infect. Microbiol., 7 (2017),p. 478
|
[137] |
Lewis, J.A., Hatfull, G.F. Identification and characterization of mycobacteriophage L5 excisionase Mol. Microbiol., 35 (2000),pp. 350-360
|
[138] |
Li, Q., Chen, J., Minton, N.P. et al. Biotechnol. J., 11 (2016),pp. 961-972
|
[139] |
Li, W., Obregón-Henao, A., Wallach, J.B. et al. Antimicrob. Agents Chemother., 60 (2016),pp. 5198-5207
|
[140] |
Liu, F., Hu, Y., Wang, Q. et al. BMC Genomics, 15 (2014),p. 69
|
[141] |
Liu, T., Wang, B., Guo, J. et al. Role of folP1 and folP2 genes in the action of sulfamethoxazole and trimethoprim against mycobacteria J. Microbiol. Biotechnol., 25 (2015),pp. 1559-1567
|
[142] |
Luo, T., Yang, C., Peng, Y. et al. Tuberculosis, 94 (2014),pp. 434-440
|
[143] |
MacGurn, J.A., Cox, J.S. Infect. Immun., 75 (2007),pp. 2668-2678
|
[144] |
Mankiewicz, E., Beland, J. The role of mycobacteriophages and of cortisone in experimental tuberculosis and sarcoidosis Am. Rev. Respir. Dis., 89 (1963),pp. 707-772
|
[145] |
Marei, A.M., El-Behedy, E.M., Mohtady, H.A. et al. J. Med. Microbiol., 52 (2003),pp. 331-335
|
[146] |
Mazurkiewicz, P., Tang, C.M., Boone, C. et al. Signature-tagged mutagenesis: barcoding mutants for genome-wide screens Nat. Rev. Genet., 7 (2006),pp. 929-939
|
[147] |
McAdam, R.A., Quan, S., Smith, D.A. et al. Microbiology, 148 (2002),pp. 2975-2986
|
[148] |
McNerney, R. Micro-well phage replication assay for screening mycobacteria for resistance to rifampicin and streptomycin Meth. Mol. Med., 48 (2001),pp. 21-30
|
[149] |
McNerney, R., Traore, H. Mycobacteriophage and their application to disease control J. Appl. Microbiol., 99 (2005),pp. 223-233
|
[150] |
McNerney, R., Wilson, S.M., Sidhu, A.M. et al. Res. Microbiol., 149 (1998),pp. 487-495
|
[151] |
McNerney, R., Kambashi, B.S., Kinkese, J. et al. Development of a bacteriophage phage replication assay for diagnosis of pulmonary tuberculosis J. Clin. Microbiol., 42 (2004),pp. 2115-2120
|
[152] |
Mei, Y., Wang, Y., Chen, H. et al. Recent progress in CRISPR/Cas9 technology J. Genet. Genomics, 43 (2016),pp. 63-75
|
[153] |
Mendum, T.A., Wu, H., Kierzek, A.M. et al. BMC Genomics, 16 (2015),p. 372
|
[154] |
Mestre, O., Hurtado-Ortiz, R., Dos Vultos, T. et al. PLoS One, 8 (2013)
|
[155] |
Metzker, M.L. Sequencing technologies-the next generation Nat. Rev. Genet., 11 (2010),pp. 31-46
|
[156] |
Mimee, M., Tucker, A.C., Voigt, C.A. et al. Cell Syst., 1 (2015),pp. 62-71
|
[157] |
Mole, R.J., Maskell, T.W. Phage as a diagnostic-the use of phage in TB diagnosis J. Chem. Technol. Biotechnol., 76 (2001),pp. 683-688
|
[158] |
Moolman, W.J., de Villiers, M., Strauss, E. Recent advances in targeting coenzyme A biosynthesis and utilization for antimicrobial drug development Biochem. Soc. Trans., 42 (2014),pp. 1080-1086
|
[159] |
Morris, P., Marinelli, L.J., Jacobs-Sera, D. et al. Genomic characterization of mycobacteriophage Giles: evidence for phage acquisition of host DNA by illegitimate recombination J. Bacteriol., 190 (2008),pp. 2172-2182
|
[160] |
Mugweru, J., Makafe, G., Cao, Y. et al. Front. Microbiol., 8 (2017),p. 468
|
[161] |
Murry, J., Sassetti, C.M., Moreira, J. et al. A new site-specific integration system for mycobacteria Tuberculosis, 85 (2005),pp. 317-323
|
[162] |
Muttucumaru, D.N., Parish, T. The molecular biology of recombination in mycobacteria: what do we know and how can we use it? Curr. Issues Mol. Biol., 6 (2004),pp. 145-158
|
[163] |
Muzaffar, R., Batool, S., Aziz, F. et al. Int. J. Tubercul. Lung Dis., 6 (2002),pp. 635-640
|
[164] |
Nambi, S., Long, J.E., Mishra, B.B. et al. Cell Host Microbe, 17 (2015),pp. 829-837
|
[165] |
Nielsen, P.E.
|
[166] |
Ollinger, J., O'Malley, T., Kesicki, E.A. et al. J. Bacteriol., 194 (2012),pp. 663-668
|
[167] |
Olsen, A., Chen, Y., Ji, Q. et al. mBio, 7 (2016),p. e01023-15
|
[168] |
Paget, E., Davies, J. Apramycin resistance as a selective sarker for gene transfer in mycobacteria J. Bacteriol., 178 (1996),pp. 6357-6360
|
[169] |
Palucci, I., Camassa, S., Cascioferro, A. et al. PLoS One, 11 (2016)
|
[170] |
Pankhurst, L.J., del Ojo Elias, C., Votintseva, A.A. et al. Rapid, comprehensive, and affordable mycobacterial diagnosis with whole-genome sequencing: a prospective study Lancet Respir. Med., 4 (2016),pp. 49-58
|
[171] |
Parikh, A., Kumar, D., Chawla, Y. et al. Development of a new generation of vectors for gene expression, gene replacement, and protein-protein interaction studies in mycobacteria Appl. Environ. Microbiol., 79 (2013),pp. 1718-1729
|
[172] |
Parish, T., Brown, A.C.
|
[173] |
Parish, T., Stoker, N.G. Development and use of a conditional antisense mutagenesis system in mycobacteria FEMS Microbiol. Lett., 154 (1997),pp. 151-157
|
[174] |
Parish, T., Stoker, N.G. Microbiology, 146 (2000),pp. 1969-1975
|
[175] |
Parish, T., Gordhan, B.G., McAdam, R.A. et al. Microbiology, 145 (1999),pp. 3497-3503
|
[176] |
Parish, T., Turner, J., Stoker, N.G. BMC Microbiol., 1 (2001),p. 19
|
[177] |
Parish, T., Roberts, G., Laval, F. et al. J. Bacteriol., 189 (2007),pp. 3721-3728
|
[178] |
Park, J.Y., Moon, B.Y., Park, J.W. et al. Sci. Rep., 7 (2017),p. 44929
|
[179] |
Pashley, C.A., Parish, T. FEMS Microbiol. Lett., 229 (2003),pp. 211-215
|
[180] |
Pearson, R.E., Jurgensen, S., Sarkis, G.J. et al. Construction of D29 shuttle phasmids and luciferase reporter phages for detection of mycobacteria Gene, 183 (1996),pp. 129-136
|
[181] |
Pelicic, V., Reyrat, J.M., Gicquel, B. J. Bacteriol., 178 (1996),pp. 1197-1199
|
[182] |
Pelicic, V., Jackson, M., Reyrat, J.M. et al. Proc. Natl. Acad. Sci. U. S. A., 94 (1997),pp. 10955-10960
|
[183] |
Pethe, K., Alonso, S., Biet, F. et al. Nature, 412 (2001),pp. 190-194
|
[184] |
Pethe, K., Swenson, D.L., Alonso, S. et al. Proc. Natl. Acad. Sci. U. S. A., 101 (2004),pp. 13642-13647
|
[185] |
Pham, T.T., Jacobs-Sera, D., Pedulla, M.L. et al. Comparative genomic analysis of mycobacteriophage Tweety: evolutionary insights and construction of compatible site-specific integration vectors for mycobacteria Microbiology, 153 (2007),pp. 2711-2723
|
[186] |
Phelan, J., Sessions, P.F., Tientcheu, L. et al. Sci. Rep., 8 (2018),p. 160
|
[187] |
Philip, N., Rodrigues, K.F., William, T. et al. Genomics Data, 9 (2016),pp. 137-139
|
[188] |
Piddington, D.L., Fang, F.C., Laessig, T. et al. Infect. Immun., 69 (2001),pp. 4980-4987
|
[189] |
Piuri, M., , Hatfull, G.F. PLoS One, 4 (2009)
|
[190] |
Qi, L.S., Larson, M.H., Gilbert, L.A. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression Cell, 152 (2013),pp. 1173-1183
|
[191] |
Quigley, J., Hughitt, V.K., Velikovsky, C.A. et al. mBio, 8 (2017),p. e00148-17
|
[192] |
Radford, A.J., Hodgson, A.L. Plasmid, 25 (1991),pp. 149-153
|
[193] |
Raju, R.M., Jedrychowski, M.P., Wei, J.R. et al. PLoS Pathog., 10 (2014)
|
[194] |
Ravishankar, S., Ambady, A., Ramu, H. et al. An IPTG inducible conditional expression system for mycobacteria PLoS One, 10 (2015)
|
[195] |
Raynaud, C., Papavinasasundaram, K.G., Speight, R.A. et al. Mol. Microbiol., 46 (2002),pp. 191-201
|
[196] |
Refaya, A.K., Sharma, D., Kumar, V. et al. Microbiol. Res., 190 (2016),pp. 1-11
|
[197] |
Rengarajan, J., Bloom, B.R., Rubin, E.J. Proc. Natl. Acad. Sci. U. S. A., 102 (2005),pp. 8327-8332
|
[198] |
Reyrat, J.M., Pelicic, V., Gicquel, B. et al. Counterselectable markers: untapped tools for bacterial genetics and pathogenesis Infect. Immun., 66 (1998),pp. 4011-4017
|
[199] |
Roberts, G., Muttucumaru, D.N., Parish, T. FEMS Microbiol. Lett., 221 (2003),pp. 131-136
|
[200] |
Roberts, R.J., Carneiro, M.O., Schatz, M.C. The advantages of SMRT sequencing Genome Biol., 14 (2013),p. 405
|
[201] |
Rock, J.M., Hopkins, F.F., Chavez, A. et al. Programmable transcriptional repression in mycobacteria using an orthogonal CRISPR interference platform Nat. Microbiol., 2 (2017),p. 16274
|
[202] |
Rodríguez, J.G., Pino, C., Tauch, A. et al. Genome Announc., 3 (2015)
|
[203] |
Rodríguez-Castillo, J.G., Pino, C., Niño, L.F. et al. Infect. Genet. Evol., 54 (2017),pp. 314-323
|
[204] |
Roetzer, A., Diel, R., Kohl, T.A. et al. PLoS Med., 10 (2013)
|
[205] |
Rondón, L., Piuri, M., Jacobs, W.R. et al. J. Clin. Microbiol., 49 (2011),pp. 1838-1842
|
[206] |
Rosas-Magallanes, V., Stadthagen-Gomez, G., Rauzier, J. et al. Infect. Immun., 75 (2007),pp. 504-507
|
[207] |
Saenz, H.L., Dehio, C. Signature-tagged mutagenesis: technical advances in a negative selection method for virulence gene identification Curr. Opin. Microbiol., 8 (2005),pp. 612-619
|
[208] |
Salah-Bey, K., Blanc, V., Thompson, C.J. Mol. Microbiol., 17 (1995),pp. 1001-1012
|
[209] |
Samaddar, S., Grewal, K.R., Sinha, S. et al. Dynamics of mycobacteriophage-mycobacterial host interaction: evidence for secondary mechanisms for host lethality Appl. Environ. Microbiol., 82 (2015),pp. 124-133
|
[210] |
Samanovic, M.I., Tu, S., Novák, O. et al. Mol. Cell, 57 (2015),pp. 984-994
|
[211] |
Sander, P., Meier, A., Böttger, E.C. rpsL+: a dominant selectable marker for gene replacement in mycobacteria Mol. Microbiol., 16 (1995),pp. 991-1000
|
[212] |
Sarkis, G.J., Jacobs, W.R., Hatfulll, G.F. L5 luciferase reporter mycobacteriophages: a sensitive tool for the detection and assay of live mycobacteria Mol. Microbiol., 15 (1995),pp. 1055-1067
|
[213] |
Sassetti, C.M., Rubin, E.J. Genetic requirements for mycobacterial survival during infection Proc. Natl. Acad. Sci. U. S. A., 100 (2003),pp. 12989-12994
|
[214] |
Satta, G., Lipman, M., Smith, G.P. et al. Clin. Microbiol. Infect., 24 (2017),pp. 604-609
|
[215] |
Saviola, B., Bishai, W.R. Method to integrate multiple plasmids into the mycobacterial chromosome Nucleic Acids Res., 32 (2004),p. e11
|
[216] |
Seaman, T., Trollip, A., Mole, R. et al. The use of a novel phage-based technology as a practical tool for the diagnosis of tuberculosis in Africa Afr. J. Biotechnol., 2 (2003),pp. 40-45
|
[217] |
Sheehan, B.J., Bosse, J.T., Beddek, A.J. et al. Infect. Immun., 71 (2003),pp. 3960-3970
|
[218] |
Shimono, N., Morici, L., Casali, N. et al. Proc. Natl. Acad. Sci. U. S. A., 100 (2003),pp. 15918-15923
|
[219] |
Singh, A., Gupta, R., Vishwakarma, R.A. et al. J. Bacteriol., 187 (2005),pp. 4173-4186
|
[220] |
Singh, V., Brecik, M., Mukherjee, R. et al. The complex mechanism of antimycobacterial action of 5-fluorouracil Chem. Biol., 22 (2015),pp. 63-75
|
[221] |
Singh, A.K., Carette, X., Potluri, L.P. et al. Nucleic Acids Res., 44 (2016),p. e143
|
[222] |
Singh, K.H., Jha, B., Dwivedy, A. et al. J. Biol. Chem., 292 (2017),pp. 11326-11335
|
[223] |
Snapper, S.B., LuGosI, L.A.S.Z.L., Jekkel, A. et al. Lysogeny and transformation in mycobacteria: stable expression of foreign genes Proc. Natl. Acad. Sci. U. S. A., 85 (1988),pp. 6987-6991
|
[224] |
Snapper, S.B., Melton, R.E., Mustafa, S. et al. Mol. Microbiol., 4 (1990),pp. 1911-1919
|
[225] |
Springer, B., Sander, P., Sedlacek, L. et al. Instability and site-specific excision of integration-proficient mycobacteriophage L5 plasmids: development of stably maintained integrative vectors Int. J. Med. Microbiol., 290 (2001),pp. 669-675
|
[226] |
Springer, B., Master, S., Sander, P. et al. Infect. Immun., 69 (2001),pp. 5967-5973
|
[227] |
Stach, J.E., Good, L. Synthetic RNA silencing in bacteria-antimicrobial discovery and resistance breaking Front. Microbiol., 2 (2011),p. 185
|
[228] |
Stender, H., Mollerup, T.A., Lund, K. et al. Int. J. Tubercul. Lung Dis., 3 (1999),pp. 830-837
|
[229] |
Stinear, T.P., Mve-Obiang, A., Small, P.L. et al. Proc. Natl. Acad. Sci. U. S. A., 101 (2004),pp. 1345-1349
|
[230] |
Stover, C.K., De La Cruz, V.F., Fuerst, T.R. et al. New use of BCG for recombinant vaccines Nature, 351 (1991),pp. 456-460
|
[231] |
Sula, L., Sulova, J., Stolcpartova, M. Therapy of experimental tuberculosis in Guinea pigs with mycobacterial phages DS-6A, GR-21T, My-327 Czech. Med., 4 (1981),pp. 209-214
|
[232] |
Sulakvelidze, A., Alavidze, Z., Bacteriophage therapy Antimicrob. Agents Chemother., 45 (2001),pp. 649-659
|
[233] |
Terpe, K. Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems Appl. Microbiol. Biotechnol., 72 (2006),pp. 211-222
|
[234] |
Tong, Y., Charusanti, P., Zhang, L. et al. CRISPR-Cas9 based engineering of actinomycetal genomes ACS Synth. Biol., 4 (2015),pp. 1020-1029
|
[235] |
Triccas, J.A., Parish, T., Britton, W.J. et al. FEMS Microbiol. Lett., 167 (1998),pp. 151-156
|
[236] |
Tufariello, J.M., Malek, A.A., Vilchèze, C. et al. mBio, 5 (2014),p. e01179-14
|
[237] |
Van Kessel, J.C., Hatfull, G.F. Nat. Methods, 4 (2007),pp. 147-152
|
[238] |
Van Kessel, J.C., Hatfull, G.F. Efficient point mutagenesis in mycobacteria using single-stranded DNA recombineering: characterization of antimycobacterial drug targets Mol. Microbiol., 67 (2008),pp. 1094-1107
|
[239] |
Vandal, O.H., Pierini, L.M., Schnappinger, D. et al. Nat. Medhods, 14 (2008),pp. 849-854
|
[240] |
Villela, A.D., Rodrigues Junior, V.D.S., Pinto, A.F.M. et al. Mem. Inst. Oswaldo Cruz, 112 (2017),pp. 203-208
|
[241] |
Wada, T., Hijikata, M., Maeda, S. et al. Genome Announc., 5 (2017),pp. e00509-e00517
|
[242] |
Wada, T., Hijikata, M., Maeda, S. et al. Genome Announc., 5 (2017),pp. e00510-e00517
|
[243] |
Wang, F., Sambandan, D., Halder, R. et al. Identification of a small molecule with activity against drug-resistant and persistent tuberculosis Proc. Natl. Acad. Sci. U. S. A., 110 (2013),pp. E2510-E2517
|
[244] |
Waters, L.S., Storz, G. Regulatory RNAs in bacteria Cell, 136 (2009),pp. 615-628
|
[245] |
Wayne, L.G., Kubica, G.E.
|
[246] |
World Health Organization
|
[247] |
Williams, K.J., Boshoff, H.I., Krishnan, N. et al. Tuberculosis, 91 (2011),pp. 549-555
|
[248] |
Wilson, S.M., al-Suwaidi, Z., McNerney, R. et al. Nat. Med., 3 (1997),pp. 465-468
|
[249] |
Wilson, T., De Lisle, G.W., Marcinkeviciene, J.A. et al. Microbiology, 144 (1998),pp. 2687-2695
|
[250] |
Witney, A.A., Cosgrove, C.A., Arnold, A. et al. BMC Med., 14 (2016),p. 46
|
[251] |
Wollenberg, K.R., Desjardins, C.A., Zalutskaya, A. et al. J. Clin. Microbiol., 55 (2017),pp. 457-469
|
[252] |
Wolschendorf, F., Ackart, D., Shrestha, T.B. et al. Proc. Natl. Acad. Sci. U. S. A., 108 (2011),pp. 1621-1626
|
[253] |
Yan, M.Y., Yan, H.Q., Ren, G.X. et al. CRISPR-Cas12a-assisted recombineering in bacteria Appl. Environ. Microbiol., 83 (2017),p. e00947-17
|
[254] |
Yang, F., Tan, Y., Liu, J. et al. Efficient construction of unmarked recombinant mycobacteria using an improved system J. Microbiol. Meth., 103 (2014),pp. 29-36
|
[255] |
Yang, F., Njire, M., Liu, J. et al. Engineering more stable, selectable marker-free autoluminescent mycobacteria by one step PLoS One, 10 (2015)
|
[256] |
Yosef, I., Manor, M., Kiro, R. et al. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria Proc. Natl. Acad. Sci. U. S. A., 112 (2015),pp. 7267-7272
|
[257] |
Yu, D., Ellis, H.M., Lee, E.C. et al. Proc. Natl. Acad. Sci. U. S. A., 97 (2000),pp. 5978-5983
|
[258] |
Yuan, Y., Crane, D.D., Simpson, R.M. et al. Proc. Natl. Acad. Sci. U. S. A., 95 (1998),pp. 9578-9583
|
[259] |
Zainuddin, Z.F., Dale, J.W. Tubercle, 711 (1990),pp. 43-49
|
[260] |
Zautner, A.E., Bunk, B., Pfeifer, Y. et al. J. Antimicrob. Chemother., 72 (2017),pp. 2737-2744
|
[261] |
Zemskova, Z.S., Dorozhkova, I.R. Pathomorphological evaluation of therapeutic effect of mycobacteriophages in tuberculosis Probl. Tuberk., 11 (1991),pp. 63-66
|
[262] |
Zhang, Y., Heym, B., Allen, B. et al. Nature, 358 (1992),pp. 591-593
|
[263] |
Zhang, Y.J., Ioerger, T.R., Huttenhower, C. et al. PLoS Pathog., 8 (2012)
|
[264] |
Zhang, H., Li, D., Zhao, L. et al. Nat. Genet., 45 (2013),pp. 1255-1260
|
[265] |
Zhang, D., Gomez, J.E., Chien, J.Y. et al. Antimicrob. Agents Chemother., 60 (2016),pp. 6600-6608
|
[266] |
Zhang, Y., Qian, L., Wei, W. et al. Paired design of dCas9 as a systematic platform for the detection of featured nucleic acid sequences in pathogenic strains ACS Synth. Biol., 6 (2017),pp. 211-216
|
[267] |
Zhu, L., Zhong, J., Jia, X. et al. Nucleic Acids Res., 44 (2016),pp. 730-743
|