5.9
CiteScore
5.9
Impact Factor
Volume 45 Issue 6
Jun.  2018
Turn off MathJax
Article Contents

Advances in the development of molecular genetic tools for Mycobacterium tuberculosis

doi: 10.1016/j.jgg.2018.06.003
More Information
  • Mycobacterium tuberculosis, a Gram-positive bacterium of great clinical relevance, is a lethal pathogen owing to its complex physiological characteristics and development of drug resistance. Several molecular genetic tools have been developed in the past few decades to study this microorganism. These tools have been instrumental in understanding how M. tuberculosis became a successful pathogen. Advanced molecular genetic tools have played a significant role in exploring the complex pathways involved in M. tuberculosis pathogenesis. Here, we review various molecular genetic tools used in the study of M. tuberculosis. Further, we discuss the applications of clustered regularly interspaced short palindromic repeat interference (CRISPRi), a novel technology recently applied in M. tuberculosis research to study target gene functions. Finally, prospective outcomes of the applications of molecular techniques in the field of M. tuberculosis genetic research are also discussed.
  • loading
  • [1]
    Abrahams, G.L., Kumar, A., Savvi, S. et al. Chem. Biol., 19 (2012),pp. 844-854
    [2]
    Ahmed, W., Menon, S., Godbole, A.A. et al. FEMS Microbiol. Lett., 353 (2014),pp. 116-123
    [3]
    Albert, H., Trollip, A., Mole, R. et al. Rapid indication of multidrug-resistant tuberculosis from liquid cultures using FASTPlaqueTB-RIF™, a manual phage-based test Int. J. Tubercul. Lung Dis., 6 (2002),pp. 523-528
    [4]
    Alcaide, F., Galí, N., Domínguez, J. et al. Usefulness of a new mycobacteriophage-based technique for rapid diagnosis of pulmonary tuberculosis J. Clin. Microbiol., 41 (2003),pp. 2867-2871
    [5]
    Aldovini, A., Young, R.A. Humoral and cell-mediated immune responses to live recombinant BCG-HIV vaccines Nature, 351 (1991),pp. 479-482
    [6]
    Ali, A., Hasan, Z., McNerney, R. et al. PLoS One, 10 (2015)
    [7]
    Anderson, L.F., Tamne, S., Brown, T. et al. Transmission of multidrug-resistant tuberculosis in the UK: a cross-sectional molecular and epidemiological study of clustering and contact tracing Lancet Infect. Dis., 14 (2014),pp. 406-415
    [8]
    Ando, H., Lemire, S., Pires, D.P. et al. Engineering modular viral scaffolds for targeted bacterial population editing Cell Syst., 23 (2015),pp. 187-196
    [9]
    Andries, K., Verhasselt, P., Guillemont, J. et al. Science, 307 (2005),pp. 223-227
    [10]
    Armitige, L.Y., Jagannath, C., Wanger, A.R. et al. Infect. Immun., 68 (2000),pp. 767-778
    [11]
    Bachrach, G., Colston, M.J., Bercovier, H. et al. Microbiology, 146 (2000),pp. 297-303
    [12]
    Balasubramanian, V., Pavelka, M.S., Bardarov, S.S. et al. J. Bacteriol., 178 (1996),pp. 273-279
    [13]
    Banaiee, N., January, V., Barthus, C. et al. Tuberculosis, 88 (2008),pp. 64-68
    [14]
    Barczak, A.K., Avraham, R., Singh, S. et al. PLoS Pathog., 13 (2017)
    [15]
    Bardarov, S., Kriakov, J., Carriere, C. et al. Proc. Natl. Acad. Sci. U. S. A., 94 (1997),pp. 10961-10966
    [16]
    Bardarov, S., , , Sambandamurthy, V., Larsen, M. et al. Microbiology, 148 (2002),pp. 3007-3017
    [17]
    Barkan, D., Stallings, C.L., Glickman, M.S. Gene, 470 (2011),pp. 31-36
    [18]
    Baulard, A., Escuyer, V., Haddad, N. et al. Mercury resistance as a selective marker for recombinant mycobacteria Microbiology, 141 (1995),pp. 1045-1050
    [19]
    Berens, C. Gene expression by tetracyclines. Constraints of resistance regulation in bacteria shape TetR for application in eukaryotes Eur. J. Biochem., 15 (2003),pp. 3109-3121
    [20]
    Berney, M., Hartman, T.E., Jacobs, W.R. mBio, 5 (2014),p. e01275-14
    [21]
    Berthet, F.X., Lagranderie, M., Gounon, P. et al. Science, 282 (1998),pp. 759-762
    [22]
    Beste, D.J., Espasa, M., Bonde, B. et al. The genetic requirements for fast and slow growth in mycobacteria PLoS One, 4 (2009),p. e5349
    [23]
    Bibb, L.A., Hatfull, G.F. Mol. Microbiol., 45 (2002),pp. 1515-1526
    [24]
    Bibb, L.A., Hancox, M.I., Hatfull, G.F. Integration and excision by the large serine recombinase φRv1 integrase Mol. Microbiol., 55 (2005),pp. 1896-1910
    [25]
    Bikard, D., Euler, C.W., Jiang, W. et al. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials Nat. Biotchnol., 32 (2014),pp. 1146-1150
    [26]
    Bjorn-Mortensen, K., Zallet, J., Lillebaek, T. et al. J. Clin. Microbiol., 53 (2015),pp. 2716-2719
    [27]
    Blokpoel, M.C., Murphy, H.N., O'toole, R. et al. Tetracycline-inducible gene regulation in mycobacteria Nucleic Acids Res., 33 (2005),p. e22
    [28]
    Boldrin, F., Casonato, S., Dainese, E. et al. Development of a repressible mycobacterial promoter system based on two transcriptional repressors Nucleic Acids Res., 38 (2010)
    [29]
    Botella, L., Vaubourgeix, J., Livny, J. et al. Nat. Commun., 8 (2017),p. 14731
    [30]
    Böttger, E.C. Resistance to drugs targeting protein synthesis in mycobacteria Trends Microbiol., 2 (1994),pp. 416-421
    [31]
    Bowman, B.U., Amos, W.T., Geer, J.C. Am. Rev. Respir. Dis., 105 (1972),pp. 85-94
    [32]
    Brecik, M., Centárová, I., Mukherjee, R. et al. DprE1 is a vulnerable tuberculosis drug target due to its cell wall localization ACS Chem. Biol., 10 (2015),pp. 1631-1636
    [33]
    Broxmeyer, L., Sosnowska, D., Miltner, E. et al. J. Infect. Dis., 186 (2002),pp. 1155-1160
    [34]
    Camacho, L.R., Ensergueix, D., Perez, E. et al. Mol. Microbiol., 34 (1999),pp. 257-267
    [35]
    Carroll, P., Muttucumaru, D.N., Parish, T. Appl. Environ. Microbiol., 71 (2005),pp. 3077-3084
    [36]
    Carroll, P., Faray-Kele, M.C., Parish, T. Appl. Environ. Microbiol., 77 (2011),pp. 5040-5043
    [37]
    Casali, N., Nikolayevskyy, V., Balabanova, Y. et al. Evolution and transmission of drug-resistant tuberculosis in a Russian population Nat. Genet., 46 (2014),pp. 279-286
    [38]
    Cascioferro, A., Boldrin, F., Serafini, A. et al. Xer site-specific recombination, an efficient tool to introduce unmarked deletions into mycobacteria Appl. Environ. Microbiol., 76 (2010),pp. 5312-5316
    [39]
    Chandolia, A., Rathor, N., Sharma, M. et al. Microbiol. Res., 169 (2014),pp. 780-787
    [40]
    Choudhary, E., Thakur, P., Pareek, M. et al. Gene silencing by CRISPR interference in mycobacteria Nat. Commun., 6 (2015),p. 6267
    [41]
    Cole, S., Brosch, R., Parkhill, J. et al. Nature, 393 (1998),pp. 537-544
    [42]
    Collins, D.M., Stephens, D.M. FEMS Microbiol. Lett., 83 (1991),pp. 11-16
    [43]
    Colman, R.E., Anderson, J., Lemmer, D. et al. J. Clin. Microbiol., 54 (2016),pp. 2058-2067
    [44]
    Consaul, S.A., FEMS Microbiol. Lett., 234 (2004),pp. 297-301
    [45]
    Cox, J.S., Chen, B., McNeil, M. et al. Nature, 402 (1999),pp. 79-83
    [46]
    da Silva, J.L., Piuri, M., Broussard, G. et al. Application of BRED technology to construct recombinant D29 reporter phage expressing EGFP FEMS Microbiol. Lett., 344 (2013),pp. 166-172
    [47]
    Darwin, K.H., Ehrt, S., Gutierrez-Ramos, J.C. et al. Science, 302 (2003),pp. 1963-1966
    [48]
    Das Gupta, S.K., Bashyam, M.D., Tyagi, A.K. Cloning and assessment of mycobacterial promoters by using a plasmid shuttle vector J. Bacteriol., 175 (1993),pp. 5186-5192
    [49]
    David, H.L., Clavel, S., Clement, F. Adsorption and grow of the bacteriophage D29 in selected mycobacteria Ann. Inst. Past. Virol., 131 (1980),pp. 167-184
    [50]
    Deboosère, N., Iantomasi, R., Queval, C.J. et al. Cell Microbiol., 19 (2017)
    [51]
    Degiacomi, G., Benjak, A., Madacki, J. et al. Sci. Rep., 7 (2017),p. 43495
    [52]
    DeJesus, M.A., Gerrick, E.R., Xu, W. et al. mBio, 8 (2017),p. e02133-16
    [53]
    Demidov, V.V., Potaman, V.N., Frank-Kamenetskil, M.D. et al. Stability of peptide nucleic acids in human serum and cellular extracts Biochem. Pharmacol., 48 (1994),pp. 1310-1313
    [54]
    Deol, P., Vohra, R., Saini, A.K. et al. J. Bacteriol., 187 (2005),pp. 3415-3420
    [55]
    Dhar, N., McKinney, J.D. Proc. Natl. Acad. Sci. U. S. A., 107 (2010),pp. 12275-12280
    [56]
    Donnelly-Wu, M.K., Jacobs, W.R., Hatfull, G.F. Superinfection immunity of mycobacteriophage L5: applications for genetic transformation of mycobacteria Mol. Microbiol., 7 (1993),pp. 407-417
    [57]
    Dos Vultos, T., Méderlé, I., Abadie, V. et al. BMC Mol. Biol., 7 (2006),p. 47
    [58]
    Dusthackeer, A., Kumar, V., Subbian, S. et al. Construction and evaluation of luciferase reporter phages for the detection of active and non-replicating tubercle bacilli J. Microbiol. Meth., 73 (2008),pp. 18-25
    [59]
    Dusthackeer, V.N.A., Balaji, S., Gomathi, N.S. et al. Diagnostic luciferase reporter phage assay for active and non-replicating persistors to detect tubercle bacilli from sputum samples Clin. Microbiol. Infect., 18 (2012),pp. 492-496
    [60]
    Dutta, N.K., Mehra, S., Didier, P.J. et al. Genetic requirements for the survival of tubercle bacilli in primates J. Infect. Dis., 201 (2010),pp. 1743-1752
    [61]
    Dutta, N.K., Bandyopadhyay, N., Veeramani, B. et al. mBio, 5 (2014),p. e01066-13
    [62]
    Ehrt, S., Guo, X.V., Hickey, C.M. et al. Controlling gene expression in mycobacteria with anhydrotetracycline and Tet repressor Nucleic Acids Res., 33 (2005),p. e21
    [63]
    Eldholm, V., Norheim, G., von der Lippe, B. et al. Genome Biol., 15 (2014),p. 490
    [64]
    Elghraoui, A., Modlin, S.J., Valafar, F. BMC Genomics, 18 (2017),p. 302
    [65]
    Fang, G., Munera, D., Friedman, D.I. et al. Nat. Biotechnol., 30 (2012),pp. 1232-1239
    [66]
    Flusberg, B.A., Webster, D.R., Lee, J.H. et al. Direct detection of DNA methylation during single-molecule, real-time sequencing Nat. Methods, 7 (2010),pp. 461-465
    [67]
    Folcher, M., Morris, R.P., Dale, G. et al. J. Biol. Chem., 276 (2001),pp. 1479-1485
    [68]
    Fomenkov, A., Vincze, T., Degtyarev, S.K. et al. Genome Announc., 5 (2017)
    [69]
    Forrellad, M.A., Bianco, M.V., Blanco, F.C. et al. BMC Microbiol., 13 (2013),p. 200
    [70]
    Forti, F., Crosta, A., Ghisotti, D. Pristinamycin-inducible gene regulation in mycobacteria J. Biotechnol., 140 (2009),pp. 270-277
    [71]
    Froman, S., Will, D.W., Bogen, E. Am. J. Public Health Nation's Health, 44 (1954),pp. 1326-1333
    [72]
    Fu, X., Ding, M., Zhang, N. et al. Mol. Med. Rep., 12 (2015),pp. 13-19
    [73]
    Fuller, T.E., Martin, S., Teel, J.F. et al. Microb. Pathog., 29 (2000),pp. 39-51
    [74]
    Galagan, J.E. Genomic insights into tuberculosis Nat. Rev. Genet., 15 (2014),pp. 307-320
    [75]
    Gandhi, N.R., Moll, A., Sturm, A.W. et al. Extensively drug-resistant tuberculosis as a cause of death in patients co-infected with tuberculosis and HIV in a rural area of South Africa Lancet, 368 (2006),pp. 1575-1580
    [76]
    Gandotra, S., Schnappinger, D., Monteleone, M. et al. Nat. Med., 13 (2007),pp. 1515-1520
    [77]
    Garbe, T.R., Barathi, J., Barnini, S. et al. Transformation of mycobacterial species using hygromycin resistance as selectable marker Microbiology, 140 (1994),pp. 133-138
    [78]
    Gardner, G.M., Weiser, R.S. Proc. Soc. Exp. Biol. Med., 66 (1947),pp. 205-206
    [79]
    Goh, S., Stach, J., Good, L. Antisense effects of PNAs in bacteria Meth. Mol. Biol., 1050 (2014),pp. 223-236
    [80]
    Gomez, A., Andreu, N., Ferrer-Navarro, M. et al. Sci. Rep., 6 (2016),p. 26221
    [81]
    Gordhan, B.G., Smith, D.A., Alderton, H. et al. Infect. Immun., 70 (2002),pp. 3080-3084
    [82]
    Gormley, E.P., Davies, J. J. Bacteriol., 173 (1991),pp. 6705-6708
    [83]
    Gouzy, A., Larrouy-Maumus, G., Bottai, D. et al. PLoS Pathog., 10 (2014)
    [84]
    Greendyke, R., Rajagopalan, M., Parish, T. et al. Microbiology, 148 (2002),pp. 3887-3900
    [85]
    Griffin, J.E., Gawronski, J.D., DeJesus, M.A. et al. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism PLoS Pathog., 7 (2011)
    [86]
    Guilhot, C., Gicquel, B., Davies, J. et al. Mol. Microbiol., 6 (1992),pp. 107-113
    [87]
    Guilhot, C., Otal, I., Van Rompaey, I. et al. J. Bacteriol., 176 (1994),pp. 535-539
    [88]
    Guo, X.V., Monteleone, M., Klotzsche, M. et al. J. Bacteriol., 189 (2007),pp. 4614-4623
    [89]
    Gutka, H.J., Wang, Y., Franzblau, S.G. et al. PLoS One, 10 (2015)
    [90]
    Hameed, H.M., Islam, M.M., Chhotaray, C. et al. Molecular targets related drug resistance mechanisms in MDR-, XDR-, and TDR-Mycobacterium tuberculosis strains Front. Cell. Infect. Microbiol., 8 (2018),p. 114
    [91]
    Harth, G., Zamecnik, P.C., Tabatadze, D. et al. Proc. Natl. Acad. Sci. U. S. A., 104 (2007),pp. 7199-7204
    [92]
    Hatfull, G.F. Genetic transformation of mycobacteria TIM, 1 (1993),pp. 310-314
    [93]
    Hatfull, G.F.
    [94]
    Hauduroy, P., Rosset, W. Tentative de traitement des hamsters inoculés avec le BCG par un bactériophage Ann. Inst. Pasteur., 104 (1963),pp. 419-420
    [95]
    Hensel, M., Shea, J.E., Gleeson, C. et al. Simultaneous identification of bacterial virulence genes by negative selection Science, 269 (1995),pp. 400-403
    [96]
    Hernandez-Abanto, S.M., Woolwine, S.C., Jain, S.K. et al. Tetracycline-inducible gene expression in mycobacteria within an animal host using modified Streptomyces tcp830 regulatory elements Arch. Microbiol., 186 (2006),pp. 459-464
    [97]
    Hernandez-Abanto, S.M., Cheng, Q.J., Singh, P. et al. J. Infect. Dis., 195 (2007),pp. 1634-1642
    [98]
    Hillen, W., Berens, C. Mechanisms underlying expression of Tn10 encoded tetracycline resistance Annu. Rev. Microbiol., 48 (1994),pp. 345-369
    [99]
    Hinds, J., Mahenthiralingam, E., Kempsell, K.E. et al. Enhanced gene replacement in mycobacteria Microbiology, 145 (1999),pp. 519-527
    [100]
    Hisert, K.B., Kirksey, M.A., Gomez, J.E. et al. Infect. Immun., 72 (2004),pp. 5315-5321
    [101]
    Hong, P.C., Tsolis, R.M., Ficht, T.A. Infect. Immun., 68 (2000),pp. 4102-4117
    [102]
    Howard, N.S., Gomez, J.E., Ko, C. et al. Gene, 166 (1995),pp. 181-182
    [103]
    Hsu, T., Hingley-Wilson, S.M., Chen, B. et al. The primary mechanism of attenuation of bacillus Calmette-Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue Proc. Natl. Acad. Sci. U. S. A., 100 (2003),pp. 12420-12425
    [104]
    Huff, J., Czyz, A., Landick, R. et al. Taking phage integration to the next level as a genetic tool for mycobacteria Gene, 468 (2010),pp. 8-19
    [105]
    Ioerger, T.R., Koo, S., No, E.G. et al. Genome analysis of multi-and extensively-drug-resistant tuberculosis from KwaZulu-Natal, South Africa PLoS One, 4 (2009)
    [106]
    Islam, M.M., Hameed, H.A., Mugweru, J. et al. Drug resistance mechanisms and novel drug targets for tuberculosis therapy J. Genet. Genomics, 44 (2017),pp. 21-37
    [107]
    Jacobs, W.R., Tuckman, M., Bloom, B.R. Introduction of foreign DNA into mycobacteria using a shuttle phasmid Nature, 327 (1987),pp. 532-535
    [108]
    Jacobs, W.R., Barletta, R.G., Udani, R. et al. Science, 260 (1993),pp. 819-822
    [109]
    Jagannathan, V., Kaur, P., Datta, S. PLoS One, 5 (2010)
    [110]
    Jain, P., Hsu, T., Arai, M. et al. mBio, 5 (2014),p. e01245-14
    [111]
    Jeanes, C., O'Grady, J. Diagnosing tuberculosis in the 21st century-Dawn of a genomics revolution? Int. J. Mycobacteriol., 5 (2016),pp. 384-391
    [112]
    Jia, X., Yang, L., Dong, M. et al. Front. Cell. Infect. Microbiol., 7 (2017),p. 88
    [113]
    Jinek, M., Chylinski, K., Fonfara, I. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity Science, 337 (2012),pp. 816-821
    [114]
    Jucker, M.T., Falkinham, J.O. Epidemiology of infection by nontuberculous mycobacteria Am. Rev. Respir. Dis., 142 (1990),pp. 858-862
    [115]
    Kalpana, G.V., Bloom, B.R., Jacobs, W.R. Insertional mutagenesis and illegitimate recombination in mycobacteria Proc. Natl. Acad. Sci. U. S. A., 88 (1991),pp. 5433-5437
    [116]
    Kandasamy, S., Narayanan, S. Microbiol. Res., 170 (2015),pp. 255-262
    [117]
    Kaur, P., Agarwal, S., Datta, S. Delineating bacteriostatic and bactericidal targets in mycobacteria using IPTG inducible antisense expression PLoS One, 4 (2009)
    [118]
    Kaur, P., Datta, S., Shandil, R.K. et al. Unravelling the secrets of mycobacterial cidality through the lens of antisense PLoS One, 11 (2016)
    [119]
    Khan, M.Z., Bhaskar, A., Upadhyay, S. et al. J. Biol. Chem., 292 (2017),pp. 16093-16108
    [120]
    Kieser, K.J., Baranowski, C., Chao, M.C. et al. Proc. Natl. Acad. Sci. U. S. A., 112 (2015),pp. 13087-13092
    [121]
    Kim, J.H., Wei, J.R., Wallach, J.B. et al. Protein inactivation in mycobacteria by controlled proteolysis and its application to deplete the beta subunit of RNA polymerase Nucleic Acids Res., 39 (2011),pp. 2210-2220
    [122]
    Kim, J.H., O'Brien, K.M., Sharma, R. et al. A genetic strategy to identify targets for the development of drugs that prevent bacterial persistence Proc. Natl. Acad. Sci. U. S. A., 110 (2013),pp. 19095-19100
    [123]
    Kolly, G.S., Boldrin, F., Sala, C. et al. Mol. Microbiol., 92 (2014),pp. 194-211
    [124]
    Korte, J., Alber, M., Trujillo, C.M. et al. PLoS Pathog., 12 (2016)
    [125]
    Krebes, J., Morgan, R.D., Bunk, B. et al. Nucleic Acids Res., 42 (2014),pp. 2415-2432
    [126]
    Kumar, V., Loganathan, P., Sivaramakrishnan, G. et al. Characterization of temperate phage Che12 and construction of a new tool for diagnosis of tuberculosis Tuberculosis, 88 (2008),pp. 616-623
    [127]
    Labidi, A., David, H.L., Roulland-Dussoix, D. Ann. Inst. Past. Microbiol., 136B (1985),pp. 209-215
    [128]
    Lamichhane, G., Zignol, M., Blades, N.J. et al. Proc. Natl. Acad. Sci. U. S. A., 100 (2003),pp. 7213-7218
    [129]
    Lazraq, R., Clavel-Sérès, S., David, H.L. Curr. Microbiol., 22 (1991),pp. 9-13
    [130]
    Le Chevalier, F., Cascioferro, A., Frigui, W. et al. Sci. Rep., 5 (2015),p. 16918
    [131]
    Leão, S.C., Matsumoto, C.K., Carneiro, A. et al. PLoS One, 8 (2013)
    [132]
    Leblanc, C., Prudhomme, T., Tabouret, G. et al. PLoS Pathog., 8 (2012)
    [133]
    Lee, M.H., Pascopella, L., Jacobs, W.R. et al. Proc. Natl. Acad. Sci. U. S. A., 88 (1991),pp. 3111-3115
    [134]
    Lee, B.Y., Clemens, D.L., Horwitz, M.A. Mol. Microbiol., 68 (2008),pp. 1047-1060
    [135]
    Lee, H., Gurtowski, J., Yoo, S. et al. Third-generation sequencing and the future of genomics BioRxiv (2016)
    [136]
    Leung, K.S.S., Siu, G.K.H., Tam, K.K.G. et al. Front. Cell. Infect. Microbiol., 7 (2017),p. 478
    [137]
    Lewis, J.A., Hatfull, G.F. Identification and characterization of mycobacteriophage L5 excisionase Mol. Microbiol., 35 (2000),pp. 350-360
    [138]
    Li, Q., Chen, J., Minton, N.P. et al. Biotechnol. J., 11 (2016),pp. 961-972
    [139]
    Li, W., Obregón-Henao, A., Wallach, J.B. et al. Antimicrob. Agents Chemother., 60 (2016),pp. 5198-5207
    [140]
    Liu, F., Hu, Y., Wang, Q. et al. BMC Genomics, 15 (2014),p. 69
    [141]
    Liu, T., Wang, B., Guo, J. et al. Role of folP1 and folP2 genes in the action of sulfamethoxazole and trimethoprim against mycobacteria J. Microbiol. Biotechnol., 25 (2015),pp. 1559-1567
    [142]
    Luo, T., Yang, C., Peng, Y. et al. Tuberculosis, 94 (2014),pp. 434-440
    [143]
    MacGurn, J.A., Cox, J.S. Infect. Immun., 75 (2007),pp. 2668-2678
    [144]
    Mankiewicz, E., Beland, J. The role of mycobacteriophages and of cortisone in experimental tuberculosis and sarcoidosis Am. Rev. Respir. Dis., 89 (1963),pp. 707-772
    [145]
    Marei, A.M., El-Behedy, E.M., Mohtady, H.A. et al. J. Med. Microbiol., 52 (2003),pp. 331-335
    [146]
    Mazurkiewicz, P., Tang, C.M., Boone, C. et al. Signature-tagged mutagenesis: barcoding mutants for genome-wide screens Nat. Rev. Genet., 7 (2006),pp. 929-939
    [147]
    McAdam, R.A., Quan, S., Smith, D.A. et al. Microbiology, 148 (2002),pp. 2975-2986
    [148]
    McNerney, R. Micro-well phage replication assay for screening mycobacteria for resistance to rifampicin and streptomycin Meth. Mol. Med., 48 (2001),pp. 21-30
    [149]
    McNerney, R., Traore, H. Mycobacteriophage and their application to disease control J. Appl. Microbiol., 99 (2005),pp. 223-233
    [150]
    McNerney, R., Wilson, S.M., Sidhu, A.M. et al. Res. Microbiol., 149 (1998),pp. 487-495
    [151]
    McNerney, R., Kambashi, B.S., Kinkese, J. et al. Development of a bacteriophage phage replication assay for diagnosis of pulmonary tuberculosis J. Clin. Microbiol., 42 (2004),pp. 2115-2120
    [152]
    Mei, Y., Wang, Y., Chen, H. et al. Recent progress in CRISPR/Cas9 technology J. Genet. Genomics, 43 (2016),pp. 63-75
    [153]
    Mendum, T.A., Wu, H., Kierzek, A.M. et al. BMC Genomics, 16 (2015),p. 372
    [154]
    Mestre, O., Hurtado-Ortiz, R., Dos Vultos, T. et al. PLoS One, 8 (2013)
    [155]
    Metzker, M.L. Sequencing technologies-the next generation Nat. Rev. Genet., 11 (2010),pp. 31-46
    [156]
    Mimee, M., Tucker, A.C., Voigt, C.A. et al. Cell Syst., 1 (2015),pp. 62-71
    [157]
    Mole, R.J., Maskell, T.W. Phage as a diagnostic-the use of phage in TB diagnosis J. Chem. Technol. Biotechnol., 76 (2001),pp. 683-688
    [158]
    Moolman, W.J., de Villiers, M., Strauss, E. Recent advances in targeting coenzyme A biosynthesis and utilization for antimicrobial drug development Biochem. Soc. Trans., 42 (2014),pp. 1080-1086
    [159]
    Morris, P., Marinelli, L.J., Jacobs-Sera, D. et al. Genomic characterization of mycobacteriophage Giles: evidence for phage acquisition of host DNA by illegitimate recombination J. Bacteriol., 190 (2008),pp. 2172-2182
    [160]
    Mugweru, J., Makafe, G., Cao, Y. et al. Front. Microbiol., 8 (2017),p. 468
    [161]
    Murry, J., Sassetti, C.M., Moreira, J. et al. A new site-specific integration system for mycobacteria Tuberculosis, 85 (2005),pp. 317-323
    [162]
    Muttucumaru, D.N., Parish, T. The molecular biology of recombination in mycobacteria: what do we know and how can we use it? Curr. Issues Mol. Biol., 6 (2004),pp. 145-158
    [163]
    Muzaffar, R., Batool, S., Aziz, F. et al. Int. J. Tubercul. Lung Dis., 6 (2002),pp. 635-640
    [164]
    Nambi, S., Long, J.E., Mishra, B.B. et al. Cell Host Microbe, 17 (2015),pp. 829-837
    [165]
    Nielsen, P.E.
    [166]
    Ollinger, J., O'Malley, T., Kesicki, E.A. et al. J. Bacteriol., 194 (2012),pp. 663-668
    [167]
    Olsen, A., Chen, Y., Ji, Q. et al. mBio, 7 (2016),p. e01023-15
    [168]
    Paget, E., Davies, J. Apramycin resistance as a selective sarker for gene transfer in mycobacteria J. Bacteriol., 178 (1996),pp. 6357-6360
    [169]
    Palucci, I., Camassa, S., Cascioferro, A. et al. PLoS One, 11 (2016)
    [170]
    Pankhurst, L.J., del Ojo Elias, C., Votintseva, A.A. et al. Rapid, comprehensive, and affordable mycobacterial diagnosis with whole-genome sequencing: a prospective study Lancet Respir. Med., 4 (2016),pp. 49-58
    [171]
    Parikh, A., Kumar, D., Chawla, Y. et al. Development of a new generation of vectors for gene expression, gene replacement, and protein-protein interaction studies in mycobacteria Appl. Environ. Microbiol., 79 (2013),pp. 1718-1729
    [172]
    Parish, T., Brown, A.C.
    [173]
    Parish, T., Stoker, N.G. Development and use of a conditional antisense mutagenesis system in mycobacteria FEMS Microbiol. Lett., 154 (1997),pp. 151-157
    [174]
    Parish, T., Stoker, N.G. Microbiology, 146 (2000),pp. 1969-1975
    [175]
    Parish, T., Gordhan, B.G., McAdam, R.A. et al. Microbiology, 145 (1999),pp. 3497-3503
    [176]
    Parish, T., Turner, J., Stoker, N.G. BMC Microbiol., 1 (2001),p. 19
    [177]
    Parish, T., Roberts, G., Laval, F. et al. J. Bacteriol., 189 (2007),pp. 3721-3728
    [178]
    Park, J.Y., Moon, B.Y., Park, J.W. et al. Sci. Rep., 7 (2017),p. 44929
    [179]
    Pashley, C.A., Parish, T. FEMS Microbiol. Lett., 229 (2003),pp. 211-215
    [180]
    Pearson, R.E., Jurgensen, S., Sarkis, G.J. et al. Construction of D29 shuttle phasmids and luciferase reporter phages for detection of mycobacteria Gene, 183 (1996),pp. 129-136
    [181]
    Pelicic, V., Reyrat, J.M., Gicquel, B. J. Bacteriol., 178 (1996),pp. 1197-1199
    [182]
    Pelicic, V., Jackson, M., Reyrat, J.M. et al. Proc. Natl. Acad. Sci. U. S. A., 94 (1997),pp. 10955-10960
    [183]
    Pethe, K., Alonso, S., Biet, F. et al. Nature, 412 (2001),pp. 190-194
    [184]
    Pethe, K., Swenson, D.L., Alonso, S. et al. Proc. Natl. Acad. Sci. U. S. A., 101 (2004),pp. 13642-13647
    [185]
    Pham, T.T., Jacobs-Sera, D., Pedulla, M.L. et al. Comparative genomic analysis of mycobacteriophage Tweety: evolutionary insights and construction of compatible site-specific integration vectors for mycobacteria Microbiology, 153 (2007),pp. 2711-2723
    [186]
    Phelan, J., Sessions, P.F., Tientcheu, L. et al. Sci. Rep., 8 (2018),p. 160
    [187]
    Philip, N., Rodrigues, K.F., William, T. et al. Genomics Data, 9 (2016),pp. 137-139
    [188]
    Piddington, D.L., Fang, F.C., Laessig, T. et al. Infect. Immun., 69 (2001),pp. 4980-4987
    [189]
    Piuri, M., , Hatfull, G.F. PLoS One, 4 (2009)
    [190]
    Qi, L.S., Larson, M.H., Gilbert, L.A. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression Cell, 152 (2013),pp. 1173-1183
    [191]
    Quigley, J., Hughitt, V.K., Velikovsky, C.A. et al. mBio, 8 (2017),p. e00148-17
    [192]
    Radford, A.J., Hodgson, A.L. Plasmid, 25 (1991),pp. 149-153
    [193]
    Raju, R.M., Jedrychowski, M.P., Wei, J.R. et al. PLoS Pathog., 10 (2014)
    [194]
    Ravishankar, S., Ambady, A., Ramu, H. et al. An IPTG inducible conditional expression system for mycobacteria PLoS One, 10 (2015)
    [195]
    Raynaud, C., Papavinasasundaram, K.G., Speight, R.A. et al. Mol. Microbiol., 46 (2002),pp. 191-201
    [196]
    Refaya, A.K., Sharma, D., Kumar, V. et al. Microbiol. Res., 190 (2016),pp. 1-11
    [197]
    Rengarajan, J., Bloom, B.R., Rubin, E.J. Proc. Natl. Acad. Sci. U. S. A., 102 (2005),pp. 8327-8332
    [198]
    Reyrat, J.M., Pelicic, V., Gicquel, B. et al. Counterselectable markers: untapped tools for bacterial genetics and pathogenesis Infect. Immun., 66 (1998),pp. 4011-4017
    [199]
    Roberts, G., Muttucumaru, D.N., Parish, T. FEMS Microbiol. Lett., 221 (2003),pp. 131-136
    [200]
    Roberts, R.J., Carneiro, M.O., Schatz, M.C. The advantages of SMRT sequencing Genome Biol., 14 (2013),p. 405
    [201]
    Rock, J.M., Hopkins, F.F., Chavez, A. et al. Programmable transcriptional repression in mycobacteria using an orthogonal CRISPR interference platform Nat. Microbiol., 2 (2017),p. 16274
    [202]
    Rodríguez, J.G., Pino, C., Tauch, A. et al. Genome Announc., 3 (2015)
    [203]
    Rodríguez-Castillo, J.G., Pino, C., Niño, L.F. et al. Infect. Genet. Evol., 54 (2017),pp. 314-323
    [204]
    Roetzer, A., Diel, R., Kohl, T.A. et al. PLoS Med., 10 (2013)
    [205]
    Rondón, L., Piuri, M., Jacobs, W.R. et al. J. Clin. Microbiol., 49 (2011),pp. 1838-1842
    [206]
    Rosas-Magallanes, V., Stadthagen-Gomez, G., Rauzier, J. et al. Infect. Immun., 75 (2007),pp. 504-507
    [207]
    Saenz, H.L., Dehio, C. Signature-tagged mutagenesis: technical advances in a negative selection method for virulence gene identification Curr. Opin. Microbiol., 8 (2005),pp. 612-619
    [208]
    Salah-Bey, K., Blanc, V., Thompson, C.J. Mol. Microbiol., 17 (1995),pp. 1001-1012
    [209]
    Samaddar, S., Grewal, K.R., Sinha, S. et al. Dynamics of mycobacteriophage-mycobacterial host interaction: evidence for secondary mechanisms for host lethality Appl. Environ. Microbiol., 82 (2015),pp. 124-133
    [210]
    Samanovic, M.I., Tu, S., Novák, O. et al. Mol. Cell, 57 (2015),pp. 984-994
    [211]
    Sander, P., Meier, A., Böttger, E.C. rpsL+: a dominant selectable marker for gene replacement in mycobacteria Mol. Microbiol., 16 (1995),pp. 991-1000
    [212]
    Sarkis, G.J., Jacobs, W.R., Hatfulll, G.F. L5 luciferase reporter mycobacteriophages: a sensitive tool for the detection and assay of live mycobacteria Mol. Microbiol., 15 (1995),pp. 1055-1067
    [213]
    Sassetti, C.M., Rubin, E.J. Genetic requirements for mycobacterial survival during infection Proc. Natl. Acad. Sci. U. S. A., 100 (2003),pp. 12989-12994
    [214]
    Satta, G., Lipman, M., Smith, G.P. et al. Clin. Microbiol. Infect., 24 (2017),pp. 604-609
    [215]
    Saviola, B., Bishai, W.R. Method to integrate multiple plasmids into the mycobacterial chromosome Nucleic Acids Res., 32 (2004),p. e11
    [216]
    Seaman, T., Trollip, A., Mole, R. et al. The use of a novel phage-based technology as a practical tool for the diagnosis of tuberculosis in Africa Afr. J. Biotechnol., 2 (2003),pp. 40-45
    [217]
    Sheehan, B.J., Bosse, J.T., Beddek, A.J. et al. Infect. Immun., 71 (2003),pp. 3960-3970
    [218]
    Shimono, N., Morici, L., Casali, N. et al. Proc. Natl. Acad. Sci. U. S. A., 100 (2003),pp. 15918-15923
    [219]
    Singh, A., Gupta, R., Vishwakarma, R.A. et al. J. Bacteriol., 187 (2005),pp. 4173-4186
    [220]
    Singh, V., Brecik, M., Mukherjee, R. et al. The complex mechanism of antimycobacterial action of 5-fluorouracil Chem. Biol., 22 (2015),pp. 63-75
    [221]
    Singh, A.K., Carette, X., Potluri, L.P. et al. Nucleic Acids Res., 44 (2016),p. e143
    [222]
    Singh, K.H., Jha, B., Dwivedy, A. et al. J. Biol. Chem., 292 (2017),pp. 11326-11335
    [223]
    Snapper, S.B., LuGosI, L.A.S.Z.L., Jekkel, A. et al. Lysogeny and transformation in mycobacteria: stable expression of foreign genes Proc. Natl. Acad. Sci. U. S. A., 85 (1988),pp. 6987-6991
    [224]
    Snapper, S.B., Melton, R.E., Mustafa, S. et al. Mol. Microbiol., 4 (1990),pp. 1911-1919
    [225]
    Springer, B., Sander, P., Sedlacek, L. et al. Instability and site-specific excision of integration-proficient mycobacteriophage L5 plasmids: development of stably maintained integrative vectors Int. J. Med. Microbiol., 290 (2001),pp. 669-675
    [226]
    Springer, B., Master, S., Sander, P. et al. Infect. Immun., 69 (2001),pp. 5967-5973
    [227]
    Stach, J.E., Good, L. Synthetic RNA silencing in bacteria-antimicrobial discovery and resistance breaking Front. Microbiol., 2 (2011),p. 185
    [228]
    Stender, H., Mollerup, T.A., Lund, K. et al. Int. J. Tubercul. Lung Dis., 3 (1999),pp. 830-837
    [229]
    Stinear, T.P., Mve-Obiang, A., Small, P.L. et al. Proc. Natl. Acad. Sci. U. S. A., 101 (2004),pp. 1345-1349
    [230]
    Stover, C.K., De La Cruz, V.F., Fuerst, T.R. et al. New use of BCG for recombinant vaccines Nature, 351 (1991),pp. 456-460
    [231]
    Sula, L., Sulova, J., Stolcpartova, M. Therapy of experimental tuberculosis in Guinea pigs with mycobacterial phages DS-6A, GR-21T, My-327 Czech. Med., 4 (1981),pp. 209-214
    [232]
    Sulakvelidze, A., Alavidze, Z., Bacteriophage therapy Antimicrob. Agents Chemother., 45 (2001),pp. 649-659
    [233]
    Terpe, K. Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems Appl. Microbiol. Biotechnol., 72 (2006),pp. 211-222
    [234]
    Tong, Y., Charusanti, P., Zhang, L. et al. CRISPR-Cas9 based engineering of actinomycetal genomes ACS Synth. Biol., 4 (2015),pp. 1020-1029
    [235]
    Triccas, J.A., Parish, T., Britton, W.J. et al. FEMS Microbiol. Lett., 167 (1998),pp. 151-156
    [236]
    Tufariello, J.M., Malek, A.A., Vilchèze, C. et al. mBio, 5 (2014),p. e01179-14
    [237]
    Van Kessel, J.C., Hatfull, G.F. Nat. Methods, 4 (2007),pp. 147-152
    [238]
    Van Kessel, J.C., Hatfull, G.F. Efficient point mutagenesis in mycobacteria using single-stranded DNA recombineering: characterization of antimycobacterial drug targets Mol. Microbiol., 67 (2008),pp. 1094-1107
    [239]
    Vandal, O.H., Pierini, L.M., Schnappinger, D. et al. Nat. Medhods, 14 (2008),pp. 849-854
    [240]
    Villela, A.D., Rodrigues Junior, V.D.S., Pinto, A.F.M. et al. Mem. Inst. Oswaldo Cruz, 112 (2017),pp. 203-208
    [241]
    Wada, T., Hijikata, M., Maeda, S. et al. Genome Announc., 5 (2017),pp. e00509-e00517
    [242]
    Wada, T., Hijikata, M., Maeda, S. et al. Genome Announc., 5 (2017),pp. e00510-e00517
    [243]
    Wang, F., Sambandan, D., Halder, R. et al. Identification of a small molecule with activity against drug-resistant and persistent tuberculosis Proc. Natl. Acad. Sci. U. S. A., 110 (2013),pp. E2510-E2517
    [244]
    Waters, L.S., Storz, G. Regulatory RNAs in bacteria Cell, 136 (2009),pp. 615-628
    [245]
    Wayne, L.G., Kubica, G.E.
    [246]
    World Health Organization
    [247]
    Williams, K.J., Boshoff, H.I., Krishnan, N. et al. Tuberculosis, 91 (2011),pp. 549-555
    [248]
    Wilson, S.M., al-Suwaidi, Z., McNerney, R. et al. Nat. Med., 3 (1997),pp. 465-468
    [249]
    Wilson, T., De Lisle, G.W., Marcinkeviciene, J.A. et al. Microbiology, 144 (1998),pp. 2687-2695
    [250]
    Witney, A.A., Cosgrove, C.A., Arnold, A. et al. BMC Med., 14 (2016),p. 46
    [251]
    Wollenberg, K.R., Desjardins, C.A., Zalutskaya, A. et al. J. Clin. Microbiol., 55 (2017),pp. 457-469
    [252]
    Wolschendorf, F., Ackart, D., Shrestha, T.B. et al. Proc. Natl. Acad. Sci. U. S. A., 108 (2011),pp. 1621-1626
    [253]
    Yan, M.Y., Yan, H.Q., Ren, G.X. et al. CRISPR-Cas12a-assisted recombineering in bacteria Appl. Environ. Microbiol., 83 (2017),p. e00947-17
    [254]
    Yang, F., Tan, Y., Liu, J. et al. Efficient construction of unmarked recombinant mycobacteria using an improved system J. Microbiol. Meth., 103 (2014),pp. 29-36
    [255]
    Yang, F., Njire, M., Liu, J. et al. Engineering more stable, selectable marker-free autoluminescent mycobacteria by one step PLoS One, 10 (2015)
    [256]
    Yosef, I., Manor, M., Kiro, R. et al. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria Proc. Natl. Acad. Sci. U. S. A., 112 (2015),pp. 7267-7272
    [257]
    Yu, D., Ellis, H.M., Lee, E.C. et al. Proc. Natl. Acad. Sci. U. S. A., 97 (2000),pp. 5978-5983
    [258]
    Yuan, Y., Crane, D.D., Simpson, R.M. et al. Proc. Natl. Acad. Sci. U. S. A., 95 (1998),pp. 9578-9583
    [259]
    Zainuddin, Z.F., Dale, J.W. Tubercle, 711 (1990),pp. 43-49
    [260]
    Zautner, A.E., Bunk, B., Pfeifer, Y. et al. J. Antimicrob. Chemother., 72 (2017),pp. 2737-2744
    [261]
    Zemskova, Z.S., Dorozhkova, I.R. Pathomorphological evaluation of therapeutic effect of mycobacteriophages in tuberculosis Probl. Tuberk., 11 (1991),pp. 63-66
    [262]
    Zhang, Y., Heym, B., Allen, B. et al. Nature, 358 (1992),pp. 591-593
    [263]
    Zhang, Y.J., Ioerger, T.R., Huttenhower, C. et al. PLoS Pathog., 8 (2012)
    [264]
    Zhang, H., Li, D., Zhao, L. et al. Nat. Genet., 45 (2013),pp. 1255-1260
    [265]
    Zhang, D., Gomez, J.E., Chien, J.Y. et al. Antimicrob. Agents Chemother., 60 (2016),pp. 6600-6608
    [266]
    Zhang, Y., Qian, L., Wei, W. et al. Paired design of dCas9 as a systematic platform for the detection of featured nucleic acid sequences in pathogenic strains ACS Synth. Biol., 6 (2017),pp. 211-216
    [267]
    Zhu, L., Zhong, J., Jia, X. et al. Nucleic Acids Res., 44 (2016),pp. 730-743
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (75) PDF downloads (7) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return