5.9
CiteScore
5.9
Impact Factor
Volume 45 Issue 6
Jun.  2018
Turn off MathJax
Article Contents

Collagen secretion screening in Drosophila supports a common secretory machinery and multiple Rab requirements

doi: 10.1016/j.jgg.2018.05.002
More Information
  • Corresponding author: E-mail address: jose.pastor@biomed.tsinghua.edu.cn (José Carlos Pastor-Pareja)
  • Received Date: 2017-11-12
  • Accepted Date: 2018-05-04
  • Rev Recd Date: 2018-03-15
  • Available Online: 2018-06-01
  • Publish Date: 2018-06-20
  • Collagens are large secreted trimeric proteins making up most of the animal extracellular matrix. Secretion of collagen has been a focus of interest for cell biologists in recent years because collagen trimers are too large and rigid to fit into the COPII vesicles mediating transport from the endoplasmic reticulum (ER) to the Golgi. Collagen-specific mechanisms to create enlarged ER-to-Golgi transport carriers have been postulated, including cargo loading by conserved ER exit site (ERES) protein Tango1. Here, we report an RNAi screening for genes involved in collagen secretion in Drosophila. In this screening, we examined distribution of GFP-tagged Collagen IV in live animals and found 88 gene hits for which the knockdown produced intracellular accumulation of Collagen IV in the fat body, the main source of matrix proteins in the larva. Among these hits, only two affected collagen secretion specifically: PH4αEFB and Plod, encoding enzymes known to mediate posttranslational modification of collagen in the ER. Every other intracellular accumulation hit affected general secretion, consistent with the notion that secretion of collagen does not use a specific mode of vesicular transport, but the general secretory pathway. Included in our hits are many known players in the eukaryotic secretory machinery, like COPII and COPI components, SNAREs and Rab-GTPase regulators. Our further analysis of the involvement of Rab-GTPases in secretion shows that Rab1, Rab2 and RabX3, are all required at ERES, each of them differentially affecting ERES morphology. Abolishing activity of all three by Rep knockdown, in contrast, led to uncoupling of ERES and Golgi. We additionally present a characterization of a screening hit we namedtrabuco (tbc), encoding an ERES-localized TBC domain-containing Rab-GAP. Finally, we discuss the success of our screening in identifying secretory pathway genes in comparison to two previous secretion screenings in Drosophila S2 cells.
  • loading
  • [1]
    Albert, S., Will, E., Gallwitz, D. Identification of the catalytic domains and their functionally critical arginine residues of two yeast GTPase-activating proteins specific for Ypt/Rab transport GTPases EMBO J., 18 (1999),pp. 5216-5225
    [2]
    Alexandrov, K., Horiuchi, H., Steele-Mortimer, O. et al. Rab escort protein-1 is a multifunctional protein that accompanies newly prenylated rab proteins to their target membranes EMBO J., 13 (1994),pp. 5262-5273
    [3]
    Alory, C., Balch, W.E. Organization of the Rab-GDI/CHM superfamily: the functional basis for choroideremia disease Traffic, 2 (2001),pp. 532-543
    [4]
    Asha, H., Nagy, I., Kovacs, G. et al. Genetics, 163 (2003),pp. 203-215
    [5]
    Bachinger, H.P., Doege, K.J., Petschek, J.P. et al. J. Biol. Chem., 257 (1982),pp. 14590-14592
    [6]
    Bannykh, S.I., Rowe, T., Balch, W.E. The organization of endoplasmic reticulum export complexes J. Cell Biol., 135 (1996),pp. 19-35
    [7]
    Bard, F., Casano, L., Mallabiabarrena, A. et al. Functional genomics reveals genes involved in protein secretion and Golgi organization Nature, 439 (2006),pp. 604-607
    [8]
    Bonifacino, J.S., Glick, B.S. The mechanisms of vesicle budding and fusion Cell, 116 (2004),pp. 153-166
    [9]
    Boyadjiev, S.A., Fromme, J.C., Ben, J. et al. Cranio-lenticulo-sutural dysplasia is caused by a SEC23A mutation leading to abnormal endoplasmic-reticulum-to-Golgi trafficking Nat. Genet., 38 (2006),pp. 1192-1197
    [10]
    Brand, A.H., Perrimon, N. Targeted gene-expression as a means of altering cell fates and generating dominant phenotypes Development, 118 (1993),pp. 401-415
    [11]
    Brandizzi, F., Barlowe, C. Organization of the ER-Golgi interface for membrane traffic control Nat. Rev. Mol. Cell Biol., 14 (2013),pp. 382-392
    [12]
    Bunt, S., Denholm, B., Skaer, H. Gene Expr. Patterns, 11 (2011),pp. 72-78
    [13]
    Bunt, S., Hooley, C., Hu, N. et al. Dev. Cell, 19 (2010),pp. 296-306
    [14]
    Chen, Y.N., Gu, X., Zhou, X.E. et al. Crystal structure of TBC1D15 GTPase-activating protein (GAP) domain and its activity on Rab GTPases Protein Sci., 26 (2017),pp. 834-846
    [15]
    Dai, J., Ma, M., Feng, Z. et al. Curr. Biol., 27 (2017),pp. 2729-2740
    [16]
    Denef, N., Chen, Y., Weeks, S.D. et al. Dev. Cell, 14 (2008),pp. 354-364
    [17]
    Dietzl, G., Chen, D., Schnorrer, F. et al. Nature, 448 (2007),pp. 151-156
    [18]
    Fessler, L.I., Nelson, R.E., Fessler, J.H. Methods Enzymol., 245 (1994),pp. 271-294
    [19]
    Fromme, J.C., Schekman, R. COPII-coated vesicles: flexible enough for large cargo? Curr. Opin. Cell Biol., 17 (2005),pp. 345-352
    [20]
    Fukuda, M. TBC proteins: GAPs for mammalian small GTPase Rab? Biosci. Rep., 31 (2011),pp. 159-168
    [21]
    Glick, B.S., Nakano, A. Membrane traffic within the Golgi apparatus Annu. Rev. Cell Dev. Biol., 25 (2009),pp. 113-132
    [22]
    Gorur, A., Yuan, L., Kenny, S.J. et al. COPII-coated membranes function as transport carriers of intracellular procollagen I J. Cell Biol., 216 (2017),pp. 1745-1759
    [23]
    Groth, C., Sasamura, T., Khanna, M.R. et al. Development, 140 (2013),pp. 3018-3027
    [24]
    Haigo, S.L., Bilder, D. Global tissue revolutions in a morphogenetic movement controlling elongation Science, 331 (2011),pp. 1071-1074
    [25]
    Hutagalung, A.H., Novick, P.J. Role of Rab GTPases in membrane traffic and cell physiology Physiol. Rev., 91 (2011),pp. 119-149
    [26]
    Hynes, R.O., Zhao, Q. The evolution of cell adhesion J. Cell Biol., 150 (2000),pp. F89-F96
    [27]
    Jayadev, R., Sherwood, D.R. Basement membranes Curr. Biol., 27 (2017),pp. R207-R211
    [28]
    Jensen, D., Schekman, R. COPII-mediated vesicle formation at a glance J. Cell Sci., 124 (2011),pp. 1-4
    [29]
    Jin, L., Pahuja, K.B., Wickliffe, K.E. et al. Ubiquitin-dependent regulation of COPII coat size and function Nature, 482 (2012),pp. 495-500
    [30]
    Kondylis, V., Rabouille, C. FEBS Lett., 583 (2009),pp. 3827-3838
    [31]
    Le, T.P., Vuong, L.T., Kim, A.R. et al. Nat. Commun., 7 (2016),p. 11501
    [32]
    Lerner, D.W., McCoy, D., Isabella, A.J. et al. A Rab10-dependent mechanism for polarized basement membrane secretion during organ morphogenesis Dev. Cell, 24 (2013),pp. 159-168
    [33]
    Liu, M., Feng, Z., Ke, H. et al. Tango1 spatially organizes ER exit sites to control ER export J. Cell Biol., 216 (2017),pp. 1035-1049
    [34]
    Maeda, M., Katada, T., Saito, K. TANGO1 recruits Sec16 to coordinately organize ER exit sites for efficient secretion J. Cell Biol., 216 (2017),pp. 1731-1743
    [35]
    Malhotra, V., Erlmann, P. The pathway of collagen secretion Annu. Rev. Cell Dev. Biol., 31 (2015),pp. 109-124
    [36]
    Martinek, N., Shahab, J., Saathoff, M. et al. J. Cell Sci., 121 (2008),pp. 1671-1680
    [37]
    Morin, X., Daneman, R., Zavortink, M. et al. Proc. Natl. Acad. Sci. U. S. A., 98 (2001),pp. 15050-15055
    [38]
    Myllyharju, J., Kivirikko, K.I. Collagens, modifying enzymes and their mutations in humans, flies and worms Trends Genet., 20 (2004),pp. 33-43
    [39]
    Natzle, J.E., Monson, J.M., McCarthy, B.J. Nature, 296 (1982),pp. 368-371
    [40]
    Ni, J.-Q., Zhou, R., Czech, B. et al. Br. J. Pharmacol., 8 (2011),pp. 405-407
    [41]
    Ni, J.Q., Markstein, M., Binari, R. et al. Br. J. Pharmacol., 5 (2008),pp. 49-51
    [42]
    Nogueira, C., Erlmann, P., Villeneuve, J. et al. SLY1 and Syntaxin 18 specify a distinct pathway for Procollagen VII export from the endoplasmic reticulum eLife, 3 (2014),p. e02784
    [43]
    Nottingham, R.M., Pusapati, G.V., Ganley, I.G. et al. RUTBC2 protein, a Rab9A effector and GTPase-activating protein for Rab36 J. Biol. Chem., 287 (2012),pp. 22740-22748
    [44]
    Pan, X., Eathiraj, S., Munson, M. et al. TBC-domain GAPs for Rab GTPases accelerate GTP hydrolysis by a dual-finger mechanism Nature, 442 (2006),pp. 303-306
    [45]
    Pastor-Pareja, J.C., Xu, T. Dev. Cell, 21 (2011),pp. 245-256
    [46]
    Pfeiffer, S., Ricardo, S., Manneville, J.B. et al. Curr. Biol., 12 (2002),pp. 957-962
    [47]
    Plutner, H., Cox, A.D., Pind, S. et al. Rab1b regulates vesicular transport between the endoplasmic reticulum and successive Golgi compartments J. Cell Biol., 115 (1991),pp. 31-43
    [48]
    Rehmann, H., Bruening, M., Berghaus, C. et al. Biochemical characterisation of TCTP questions its function as a guanine nucleotide exchange factor for Rheb FEBS Lett., 582 (2008),pp. 3005-3010
    [49]
    Rios-Barrera, L.D., Sigurbjornsdottir, S., Baer, M. et al. Dual function for Tango1 in secretion of bulky cargo and in ER-Golgi morphology Proc. Natl. Acad. Sci. U. S. A., 114 (2017)
    [50]
    Roote, J., Prokop, A. G3 (Bethesda), 3 (2013),pp. 353-358
    [51]
    Sacher, M., Jiang, Y., Barrowman, J. et al. EMBO J., 17 (1998),pp. 2494-2503
    [52]
    Saito, K., Chen, M., Bard, F. et al. TANGO1 facilitates Cargo loading at endoplasmic reticulum exit sites Cell, 136 (2009),pp. 891-902
    [53]
    Spradling, A.C., Rubin, G.M. Science, 218 (1982),pp. 341-347
    [54]
    Tisdale, E.J., Balch, W.E. Rab2 is essential for the maturation of pre-Golgi intermediates J. Biol. Chem., 271 (1996),pp. 29372-29379
    [55]
    Urbano, J.M., Torgler, C.N., Molnar, C. et al. Development, 136 (2009),pp. 4165-4176
    [56]
    Venditti, R., Scanu, T., Santoro, M. et al. Sedlin controls the ER export of procollagen by regulating the Sar1 cycle Science, 337 (2012),pp. 1668-1672
    [57]
    Venken, K.J., Schulze, K.L., Haelterman, N.A. et al. Br. J. Pharmacol., 8 (2011),pp. 737-743
    [58]
    Wendler, F., Gillingham, A.K., Sinka, R. et al. A genome-wide RNA interference screen identifies two novel components of the metazoan secretory pathway EMBO J., 29 (2010),pp. 304-314
    [59]
    Yang, H., Sasaki, T., Minoshima, S. et al. Identification of three novel proteins (SGSM1, 2, 3) which modulate small G protein (RAP and RAB)-mediated signaling pathway Genomics, 90 (2007),pp. 249-260
    [60]
    Yurchenco, P.D. Basement membranes: cell scaffoldings and signaling platforms Cold Spring Harb. Perspect. Biol., 3 (2011)
    [61]
    Zang, Y., Wan, M., Liu, M. et al. eLife, 4 (2015),p. e07187
    [62]
    Zerial, M., McBride, H. Rab proteins as membrane organizers Nat. Rev. Mol. Cell Biol., 2 (2001),pp. 107-117
    [63]
    Zhang, J., Schulze, K.L., Hiesinger, P.R. et al. Genetics, 176 (2007),pp. 1307-1322
    [64]
    Zhang, L., Syed, Z.A., Hard, I.D. et al. O-Glycosylation regulates polarized secretion by modulating Tango1 stability Proc. Natl. Acad. Sci. U. S. A., 111 (2014),pp. 7296-7301
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (102) PDF downloads (3) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return