[1] |
Adamo, L., Naveiras, O., Wenzel, P.L. et al. Biomechanical forces promote embryonic haematopoiesis Nature, 459 (2009),pp. 1131-1135
|
[2] |
Ando, R., Hama, H., Yamamoto-Hino, M. et al. An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein Proc. Natl. Acad. Sci. U.S.A., 99 (2002),pp. 12651-12656
|
[3] |
Bertrand, J.Y., Chi, N.C., Santoso, B. et al. Haematopoietic stem cells derive directly from aortic endothelium during development Nature, 464 (2010),pp. 108-111
|
[4] |
Bertrand, J.Y., Kim, A.D., Violette, E.P. et al. Definitive hematopoiesis initiates through a committed erythromyeloid progenitor in the zebrafish embryo Development, 134 (2007),pp. 4147-4156
|
[5] |
Boisset, J.C., van Cappellen, W., Andrieu-Soler, C. et al. Nature, 464 (2010),pp. 116-120
|
[6] |
Burns, C.E., Traver, D., Mayhall, E. et al. Hematopoietic stem cell fate is established by the Notch-Runx pathway Genes Dev., 19 (2005),pp. 2331-2342
|
[7] |
Burns, C.E., Zon, L.I. Homing sweet homing: odyssey of hematopoietic stem cells Immunity, 25 (2006),pp. 859-862
|
[8] |
Chen, J., Ruan, H., Ng, S.M. et al. Genes Dev., 19 (2005),pp. 2900-2911
|
[9] |
Chen, M.J., Yokomizo, T., Zeigler, B.M. et al. Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter Nature, 457 (2009),pp. 887-891
|
[10] |
Chi, N.C., Shaw, R.M., De Val, S. et al. Genes Dev., 22 (2008),pp. 734-739
|
[11] |
Choi, K., Kennedy, M., Kazarov, A. et al. A common precursor for hematopoietic and endothelial cells Development, 125 (1998),pp. 725-732
|
[12] |
Davidson, A.J., Zon, L.I. The ‘definitive’ (and ‘primitive’) guide to zebrafish hematopoiesis Oncogene, 23 (2004),pp. 7233-7246
|
[13] |
de Bruijn, M.F., Speck, N.A., Peeters, M.C. et al. Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo EMBO J., 19 (2000),pp. 2465-2474
|
[14] |
Diaz, M.F., Li, N., Lee, H.J. et al. Biomechanical forces promote blood development through prostaglandin E2 and the cAMP-PKA signaling axis J. Exp. Med., 212 (2015),pp. 665-680
|
[15] |
Eilken, H.M., Nishikawa, S., Schroeder, T. Continuous single-cell imaging of blood generation from haemogenic endothelium Nature, 457 (2009),pp. 896-900
|
[16] |
Ema, H., Nakauchi, H. Expansion of hematopoietic stem cells in the developing liver of a mouse embryo Blood, 95 (2000),pp. 2284-2288
|
[17] |
Gekas, C., Dieterlen-Lievre, F., Orkin, S.H. et al. The placenta is a niche for hematopoietic stem cells Dev. Cell, 8 (2005),pp. 365-375
|
[18] |
Gering, M., Patient, R. Hedgehog signaling is required for adult blood stem cell formation in zebrafish embryos Dev. Cell, 8 (2005),pp. 389-400
|
[19] |
Gurskaya, N.G., Verkhusha, V.V., Shcheglov, A.S. et al. Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light Nat. Biotechnol., 24 (2006),pp. 461-465
|
[20] |
He, J., Lu, H., Zou, Q. et al. Regeneration of liver after extreme hepatocyte loss occurs mainly via biliary transdifferentiation in zebrafish Gastroenterology, 146 (2014),pp. 789-800
|
[21] |
Huber, T.L., Kouskoff, V., Fehling, H.J. et al. Haemangioblast commitment is initiated in the primitive streak of the mouse embryo Nature, 432 (2004),pp. 625-630
|
[22] |
Inman, K.E., Downs, K.M. The murine allantois: emerging paradigms in development of the mammalian umbilical cord and its relation to the fetus Genesis, 45 (2007),pp. 237-258
|
[23] |
Jin, H., Sood, R., Xu, J. et al. Definitive hematopoietic stem/progenitor cells manifest distinct differentiation output in the zebrafish VDA and PBI Development, 136 (2009),pp. 647-654
|
[24] |
Jin, H., Xu, J., Wen, Z. Migratory path of definitive hematopoietic stem/progenitor cells during zebrafish development Blood, 109 (2007),pp. 5208-5214
|
[25] |
Jin, S.W., Beis, D., Mitchell, T. et al. Cellular and molecular analyses of vascular tube and lumen formation in zebrafish Development, 132 (2005),pp. 5199-5209
|
[26] |
Jing, L., Tamplin, O.J., Chen, M.J. et al. Adenosine signaling promotes hematopoietic stem and progenitor cell emergence J. Exp. Med., 212 (2015),pp. 649-663
|
[27] |
Keyte, A.L., Smith, K.K. Heterochrony and developmental timing mechanisms: changing ontogenies in evolution Semin. Cell Dev. Biol., 34 (2014),pp. 99-107
|
[28] |
Kieusseian, A., Brunet de la Grange, P., Burlen-Defranoux, O. et al. Immature hematopoietic stem cells undergo maturation in the fetal liver Development, 139 (2012),pp. 3521-3530
|
[29] |
Kikuchi, K., Holdway, J.E., Werdich, A.A. et al. Nature, 464 (2010),pp. 601-605
|
[30] |
Kim, P.G., Nakano, H., Das, P.P. et al. Flow-induced protein kinase A-CREB pathway acts via BMP signaling to promote HSC emergence J. Exp. Med., 212 (2015),pp. 633-648
|
[31] |
Kissa, K., Herbomel, P. Blood stem cells emerge from aortic endothelium by a novel type of cell transition Nature, 464 (2010),pp. 112-115
|
[32] |
Kissa, K., Murayama, E., Zapata, A. et al. Live imaging of emerging hematopoietic stem cells and early thymus colonization Blood, 111 (2008),pp. 1147-1156
|
[33] |
Kondo, M., Wagers, A.J., Manz, M.G. et al. Biology of hematopoietic stem cells and progenitors: implications for clinical application Annu. Rev. Immunol., 21 (2003),pp. 759-806
|
[34] |
Kwan, W., North, T.E. Netting novel regulators of hematopoiesis and hematologic malignancies in zebrafish Curr. Top. Dev. Biol., 124 (2017),pp. 125-160
|
[35] |
Lam, E.Y., Hall, C.J., Crosier, P.S. et al. Live imaging of Runx1 expression in the dorsal aorta tracks the emergence of blood progenitors from endothelial cells Blood, 116 (2010),pp. 909-914
|
[36] |
Lancrin, C., Sroczynska, P., Stephenson, C. et al. The haemangioblast generates haematopoietic cells through a haemogenic endothelium stage Nature, 457 (2009),pp. 892-895
|
[37] |
Li, L., Yan, B., Shi, Y.Q. et al. Live imaging reveals differing roles of macrophages and neutrophils during zebrafish tail fin regeneration J. Biol. Chem., 287 (2012),pp. 25353-25360
|
[38] |
Li, Z., Lan, Y., He, W. et al. Mouse embryonic head as a site for hematopoietic stem cell development Cell Stem Cell, 11 (2012),pp. 663-675
|
[39] |
Liu, C., Wu, C., Yang, Q. et al. Macrophages mediate the repair of brain vascular rupture through direct physical adhesion and mechanical traction Immunity, 44 (2016),pp. 1162-1176
|
[40] |
Medvinsky, A., Dzierzak, E. Definitive hematopoiesis is autonomously initiated by the AGM region Cell, 86 (1996),pp. 897-906
|
[41] |
Murayama, E., Kissa, K., Zapata, A. et al. Tracing hematopoietic precursor migration to successive hematopoietic organs during zebrafish development Immunity, 25 (2006),pp. 963-975
|
[42] |
North, T.E., Goessling, W., Peeters, M. et al. Hematopoietic stem cell development is dependent on blood flow Cell, 137 (2009),pp. 736-748
|
[43] |
North, T.E., Goessling, W., Walkley, C.R. et al. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis Nature, 447 (2007),pp. 1007-1011
|
[44] |
Orkin, S.H., Zon, L.I. Hematopoiesis: an evolving paradigm for stem cell biology Cell, 132 (2008),pp. 631-644
|
[45] |
Ottersbach, K., Dzierzak, E. The murine placenta contains hematopoietic stem cells within the vascular labyrinth region Dev. Cell, 8 (2005),pp. 377-387
|
[46] |
Rossi, A., Kontarakis, Z., Gerri, C. et al. Genetic compensation induced by deleterious mutations but not gene knockdowns Nature, 524 (2015),pp. 230-233
|
[47] |
Sood, R., English, M.A., Belele, C.L. et al. Blood, 115 (2010),pp. 2806-2809
|
[48] |
Tamplin, O.J., Durand, E.M., Carr, L.A. et al. Hematopoietic stem cell arrival triggers dynamic remodeling of the perivascular niche Cell, 160 (2015),pp. 241-252
|
[49] |
Tian, Y., Xu, J., Feng, S. The first wave of T lymphopoiesis in zebrafish arises from aorta endothelium independent of hematopoietic stem cells J. Exp. Med., 214 (2017),pp. 3347-3360
|
[50] |
Traver, D. Going with the flow: how shear stress signals the emergence of adult hematopoiesis J. Exp. Med., 212 (2015),p. 600
|
[51] |
Tsinkalovsky, O., Vik-Mo, A.O., Ferreira, S. et al. Zebrafish kidney marrow contains ABCG2-dependent side population cells exhibiting hematopoietic stem cell properties Differentiation, 75 (2007),pp. 175-183
|
[52] |
Wang, L., Zhang, P., Wei, Y. et al. Blood, 118 (2011),pp. 4102-4110
|
[53] |
Xu, J., Zhu, L., He, S. et al. Temporal-spatial resolution fate mapping reveals distinct origins for embryonic and adult microglia in zebrafish Dev. Cell, 34 (2015),pp. 632-641
|
[54] |
Zhang, P., He, Q., Chen, D. et al. G protein-coupled receptor 183 facilitates endothelial-to-hematopoietic transition via Notch1 inhibition Cell Res., 25 (2015),pp. 1093-1107
|