5.9
CiteScore
5.9
Impact Factor
Volume 45 Issue 2
Feb.  2018
Turn off MathJax
Article Contents

Developing DNA methylation-based diagnostic biomarkers

doi: 10.1016/j.jgg.2018.02.003
More Information
  • Corresponding author: E-mail address: wangxudong1971@126.com (Xudong Wang); E-mail address: peng.jin@emory.edu (Peng Jin)
  • Received Date: 2017-12-25
  • Accepted Date: 2018-02-12
  • Rev Recd Date: 2018-01-29
  • Available Online: 2018-02-17
  • Publish Date: 2018-02-20
  • An emerging paradigm shift for disease diagnosis is to rely on molecular characterization beyond traditional clinical and symptom-based examinations. Although genetic alterations and transcription signature were first introduced as potential biomarkers, clinical implementations of these markers are limited due to low reproducibility and accuracy. Instead, epigenetic changes are considered as an alternative approach to disease diagnosis. Complex epigenetic regulation is required for normal biological functions and it has been shown that distinctive epigenetic disruptions could contribute to disease pathogenesis. Disease-specific epigenetic changes, especially DNA methylation, have been observed, suggesting its potential as disease biomarkers for diagnosis. In addition to specificity, the feasibility of detecting disease-associated methylation marks in the biological specimens collected noninvasively, such as blood samples, has driven the clinical studies to validate disease-specific DNA methylation changes as a diagnostic biomarker. Here, we highlight the advantages of DNA methylation signature for diagnosis in different diseases and discuss the statistical and technical challenges to be overcome before clinical implementation.
  • loading
  • [1]
    Ahmed, H. Promoter methylation in prostate cancer and its application for the early detection of prostate cancer using serum and urine samples Biomarker. Cancer, 2010 (2010),pp. 17-33
    [2]
    Akbarian, S., Huang, H.S. Brain Res. Rev., 52 (2006),pp. 293-304
    [3]
    Andriole, G.L., Crawford, E.D., , Buys, S.S. et al. Mortality results from a randomized prostate-cancer screening trial N. Engl. J. Med., 360 (2009),pp. 1310-1319
    [4]
    Aref-Eshghi, E., Rodenhiser, D.I., Schenkel, L.C. et al. Genomic DNA methylation signatures enable concurrent diagnosis and clinical genetic variant classification in neurodevelopmental syndromes Am. J. Hum. Genet., 102 (2018),pp. 156-174
    [5]
    Atalay, C. Epigenetics in breast cancer Exp. Oncol., 35 (2013),pp. 246-249
    [6]
    Autism Spectrum Disorders Working Group of The Psychiatric Genomics Consortium Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel locus at 10q24.32 and a significant overlap with schizophrenia Mol. Autism., 8 (2017),p. 21
    [7]
    Baker-Andresen, D., Ratnu, V.S., Bredy, T.W. Dynamic DNA methylation: a prime candidate for genomic metaplasticity and behavioral adaptation Trends Neurosci., 36 (2013),pp. 3-13
    [8]
    Banerji, S., Cibulskis, K., Rangel-Escareno, C. et al. Sequence analysis of mutations and translocations across breast cancer subtypes Nature, 486 (2012),pp. 405-409
    [9]
    Barry, M.J. Clinical practice. Prostate-specific-antigen testing for early diagnosis of prostate cancer N. Engl. J. Med., 344 (2001),pp. 1373-1377
    [10]
    Behnia, F., Parets, S.E., Kechichian, T. et al. Fetal DNA methylation of autism spectrum disorders candidate genes: association with spontaneous preterm birth Am. J. Obstet. Gynecol., 212 (2015),pp. 533.e1-533.e9
    [11]
    Belinsky, S.A. Gene-promoter hypermethylation as a biomarker in lung cancer Nat. Rev. Cancer, 4 (2004),pp. 707-717
    [12]
    Bernardini, S., Miano, R., Iori, R. et al. Clin. Chim. Acta, 350 (2004),pp. 181-188
    [13]
    Bernstein, B.E., Stamatoyannopoulos, J.A., Costello, J.F. et al. The NIH Roadmap Epigenomics Mapping Consortium Nat. Biotechnol., 28 (2010),pp. 1045-1048
    [14]
    Bloom, C.I., Graham, C.M., Berry, M.P. et al. Transcriptional blood signatures distinguish pulmonary tuberculosis, pulmonary sarcoidosis, pneumonias and lung cancers PLoS One, 8 (2013)
    [15]
    Carboni, L., Lattanzio, F., Candeletti, S. et al. Peripheral leukocyte expression of the potential biomarker proteins Bdnf, Sirt1, and Psen1 is not regulated by promoter methylation in Alzheimer's disease patients Neurosci. Lett., 605 (2015),pp. 44-48
    [16]
    Carter, H.B. A PSA threshold of 4.0 ng/mL for early detection of prostate cancer: the only rational approach for men 50 years old and older Urology, 55 (2000),pp. 796-799
    [17]
    Catalona, W.J., Richie, J.P., Ahmann, F.R. et al. Comparison of digital rectal examination and serum prostate specific antigen in the early detection of prostate cancer: results of a multicenter clinical trial of 6,630 men J. Urol., 151 (1994),pp. 1283-1290
    [18]
    Chan, M.K., Krebs, M.O., Cox, D. et al. Development of a blood-based molecular biomarker test for identification of schizophrenia before disease onset Transl. Psychiatry, 5 (2015),p. e601
    [19]
    Chang, D., Nalls, M.A., Hallgrimsdottir, I.B. et al. A meta-analysis of genome-wide association studies identifies 17 new Parkinson's disease risk loci Nat. Genet., 49 (2017),pp. 1511-1516
    [20]
    Chang, L., Wang, Y., Ji, H. et al. PLoS One, 9 (2014)
    [21]
    Cheuk, I.W., Shin, V.Y., Kwong, A. Detection of methylated circulating DNA as noninvasive biomarkers for breast cancer diagnosis J. Breast Cancer, 20 (2017),pp. 12-19
    [22]
    Chimonidou, M., Strati, A., Malamos, N. et al. Clin. Chem., 59 (2013),pp. 270-279
    [23]
    Chu, D.C., Chuang, C.K., Fu, J.B. et al. J. Urol., 167 (2002),pp. 1854-1858
    [24]
    Chuang, C.K., Chu, D.C., Tzou, R.D. et al. Cancer Detect. Prev., 31 (2007),pp. 59-63
    [25]
    Chuang, Y.H., Paul, K.C., Bronstein, J.M. et al. Parkinson's disease is associated with DNA methylation levels in human blood and saliva Genome Med., 9 (2017),p. 76
    [26]
    Cohen, J.D., Li, L., Wang, Y. et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test Science (2018)
    [27]
    Davis, C.A., Hitz, B.C., Sloan, C.A. et al. The encyclopedia of DNA elements (ENCODE): data portal update Nucleic Acids Res., 46 (2018),pp. D794-D801
    [28]
    De Jager, P.L., Srivastava, G., Lunnon, K. et al. Nat. Neurosci., 17 (2014),pp. 1156-1163
    [29]
    Delgado-Morales, R., Agis-Balboa, R.C., Esteller, M. et al. Epigenetic mechanisms during ageing and neurogenesis as novel therapeutic avenues in human brain disorders Clin. Epigenetics, 9 (2017),p. 67
    [30]
    Diaz-Lagares, A., Mendez-Gonzalez, J., Hervas, D. et al. A novel epigenetic signature for early diagnosis in lung cancer Clin. Cancer Res., 22 (2016),pp. 3361-3371
    [31]
    Doi, A., Park, I.H., Wen, B. et al. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts Nat. Genet., 41 (2009),pp. 1350-1353
    [32]
    Ebert, M.P., Mooney, S.H., Tonnes-Priddy, L. et al. Neoplasia, 7 (2005),pp. 771-778
    [33]
    Elagoz Yuksel, M., Yuceturk, B., Karatas, O.F. et al. The altered promoter methylation of oxytocin receptor gene in autism J. Neurogenet., 30 (2016),pp. 280-284
    [34]
    Erasmus, J.J., McAdams, H.P., Connolly, J.E. Solitary pulmonary nodules: Part II. Evaluation of the indeterminate nodule Radiographics, 20 (2000),pp. 59-66
    [35]
    Esteller, M. Epigenetics in cancer N. Engl. J. Med., 358 (2008),pp. 1148-1159
    [36]
    Fernandez, A.F., Assenov, Y., Martin-Subero, J.I. et al. A DNA methylation fingerprint of 1628 human samples Genome Res., 22 (2012),pp. 407-419
    [37]
    Fransquet, P.D., Lacaze, P., Saffery, R. et al. Blood DNA methylation as a potential biomarker of dementia: a systematic review Alzheimers Dement., 14 (2018),pp. 81-103
    [38]
    Frommer, M., McDonald, L.E., Millar, D.S. et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands Proc. Natl. Acad. Sci. U. S. A., 89 (1992),pp. 1827-1831
    [39]
    GBD 2015 Neurological Disorders Collaborator Group Global, regional, and national burden of neurological disorders during 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015 Lancet Neurol., 16 (2017),pp. 877-897
    [40]
    Gormley, P., Anttila, V., Winsvold, B.S. et al. Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine Nat. Genet., 48 (2016),pp. 856-866
    [41]
    Grayson, D.R., Guidotti, A. The dynamics of DNA methylation in schizophrenia and related psychiatric disorders Neuropsychopharmacology, 38 (2013),pp. 138-166
    [42]
    Guerreiro, R.J., Lohmann, E., Kinsella, E. et al. Neurobiol. Aging, 33 (2012),pp. 1008.e17-1008.e23
    [43]
    Guo, S., Diep, D., Plongthongkum, N. et al. Identification of methylation haplotype blocks aids in deconvolution of heterogeneous tissue samples and tumor tissue-of-origin mapping from plasma DNA Nat. Genet., 49 (2017),pp. 635-642
    [44]
    Haggarty, S.J. Epigenetic diagnostics for neuropsychiatric disorders: above the genome Neurology, 84 (2015),pp. 1618-1619
    [45]
    Han, S.H., Mook-Jung, I. Diverse molecular targets for therapeutic strategies in Alzheimer's disease J. Korean Med. Sci., 29 (2014),pp. 893-902
    [46]
    Hanahan, D., Weinberg, R.A. Hallmarks of cancer: the next generation Cell, 144 (2011),pp. 646-674
    [47]
    Herman, J.G., Baylin, S.B. Gene silencing in cancer in association with promoter hypermethylation. N. Engl J. Med., 349 (2003),pp. 2042-2054
    [48]
    Heyn, H., Esteller, M. DNA methylation profiling in the clinic: applications and challenges Nat. Rev. Genet., 13 (2012),pp. 679-692
    [49]
    Heyn, H., Esteller, M. An adenine code for DNA: a second life for N6-methyladenine Cell, 161 (2015),pp. 710-713
    [50]
    Howsmon, D.P., Kruger, U., Melnyk, S. et al. Classification and adaptive behavior prediction of children with autism spectrum disorder based upon multivariate data analysis of markers of oxidative stress and DNA methylation PLoS Comput. Biol., 13 (2017)
    [51]
    Hwang, J.Y., Aromolaran, K.A., Zukin, R.S. The emerging field of epigenetics in neurodegeneration and neuroprotection Nat. Rev. Neurosci., 18 (2017),pp. 347-361
    [52]
    Ito, S., Shen, L., Dai, Q. et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine Science, 333 (2011),pp. 1300-1303
    [53]
    Jacinto, F.V., Ballestar, E., Esteller, M. Methyl-DNA immunoprecipitation (MeDIP): hunting down the DNA methylome Biotechniques, 44 (2008)
    [54]
    Jack, A., Connelly, J.J., Morris, J.P. DNA methylation of the oxytocin receptor gene predicts neural response to ambiguous social stimuli Front. Hum. Neurosci., 6 (2012),p. 280
    [55]
    Jakubowski, J.L., Labrie, V. Epigenetic biomarkers for Parkinso's disease: from diagnostics to therapeutics J. Parkinsons Dis., 7 (2017),pp. 1-12
    [56]
    Jankowska, A.M., Millward, C.L., Caldwell, C.W. The potential of DNA modifications as biomarkers and therapeutic targets in oncology Expert Rev. Mol. Diagn., 15 (2015),pp. 1325-1337
    [57]
    Jenuwein, T., Allis, C.D. Translating the histone code Science, 293 (2001),pp. 1074-1080
    [58]
    Jin, B., Robertson, K.D. DNA methyltransferases, DNA damage repair, and cancer Adv. Exp. Med. Biol., 754 (2013),pp. 3-29
    [59]
    Jovanovic, J., Ronneberg, J.A., Tost, J. et al. The epigenetics of breast cancer Mol. Oncol., 4 (2010),pp. 242-254
    [60]
    Jowaed, A., Schmitt, I., Kaut, O. et al. Methylation regulates alpha-synuclein expression and is decreased in Parkinson's disease patients' brains J. Neurosci., 30 (2010),pp. 6355-6359
    [61]
    Kumsta, R., Hummel, E., Chen, F.S. et al. Epigenetic regulation of the oxytocin receptor gene: implications for behavioral neuroscience Front. Neurosci., 7 (2013),p. 83
    [62]
    Kwon, Y.J., Lee, S.J., Koh, J.S. et al. Genome-wide analysis of DNA methylation and the gene expression change in lung cancer J. Thorac. Oncol., 7 (2012),pp. 20-33
    [63]
    Lai, C.Y., Scarr, E., Udawela, M. et al. Biomarkers in schizophrenia: a focus on blood based diagnostics and theranostics World J. Psychiatry, 6 (2016),pp. 102-117
    [64]
    Lappalainen, T., Greally, J.M. Associating cellular epigenetic models with human phenotypes Nat. Rev. Genet., 18 (2017),pp. 441-451
    [65]
    Lee, W.H., Morton, R.A., Epstein, J.I. et al. Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis Proc. Natl. Acad. Sci. U. S. A., 91 (1994),pp. 11733-11737
    [66]
    Lehmann-Werman, R., Neiman, D., Zemmour, H. et al. Identification of tissue-specific cell death using methylation patterns of circulating DNA Proc. Natl. Acad. Sci. U.S.A., 113 (2016),pp. E1826-E1834
    [67]
    Leng, S., Do, K., Yingling, C.M. et al. Defining a gene promoter methylation signature in sputum for lung cancer risk assessment Clin. Cancer Res., 18 (2012),pp. 3387-3395
    [68]
    Li, W., Zhang, X., Lu, X. et al. 5-Hydroxymethylcytosine signatures in circulating cell-free DNA as diagnostic biomarkers for human cancers Cell Res., 27 (2017),pp. 1243-1257
    [69]
    Lichtenstein, P., Carlstrom, E., Rastam, M. et al. The genetics of autism spectrum disorders and related neuropsychiatric disorders in childhood Am. J. Psychiatry, 167 (2010),pp. 1357-1363
    [70]
    Liloglou, T., Bediaga, N.G., Brown, B.R. et al. Epigenetic biomarkers in lung cancer Cancer Lett., 342 (2014),pp. 200-212
    [71]
    Lofton-Day, C., Model, F., Devos, T. et al. DNA methylation biomarkers for blood-based colorectal cancer screening Clin. Chem., 54 (2008),pp. 414-423
    [72]
    LoParo, D., Waldman, I.D. Mol. Psychiatry, 20 (2015),pp. 640-646
    [73]
    Lou, J.J., Mirsadraei, L., Sanchez, D.E. et al. A review of room temperature storage of biospecimen tissue and nucleic acids for anatomic pathology laboratories and biorepositories Clin. Biochem., 47 (2014),pp. 267-273
    [74]
    Mack, S.C., Hubert, C.G., Miller, T.E. et al. An epigenetic gateway to brain tumor cell identity Nat. Neurosci., 19 (2016),pp. 10-19
    [75]
    Maruyama, R., Toyooka, S., Toyooka, K.O. et al. Aberrant promoter methylation profile of prostate cancers and its relationship to clinicopathological features Clin. Cancer Res., 8 (2002),pp. 514-519
    [76]
    Mettlin, C.J., Murphy, G.P., Babaian, R.J. et al. Observations on the early detection of prostate cancer from the American Cancer Society National Prostate Cancer Detection Project Cancer, 80 (1997),pp. 1814-1817
    [77]
    Moran, S., Arribas, C., Esteller, M. Validation of a DNA methylation microarray for 850,000 CpG sites of the human genome enriched in enhancer sequences Epigenomics, 8 (2016),pp. 389-399
    [78]
    Moran, S., Martinez-Cardus, A., Sayols, S. et al. Epigenetic profiling to classify cancer of unknown primary: a multicentre, retrospective analysis Lancet Oncol., 17 (2016),pp. 1386-1395
    [79]
    Nagata, T., Kobayashi, N., Ishii, J. et al. Dement. Geriatr. Cogn. Dis. Extra, 5 (2015),pp. 64-73
    [80]
    Nardone, S., Sams, D.S., Zito, A. et al. Dysregulation of cortical neuron DNA methylation profile in autism spectrum disorder Cerebr. Cortex, 27 (2017),pp. 5739-5754
    [81]
    Nikolaidis, G., Raji, O.Y., Markopoulou, S. et al. DNA methylation biomarkers offer improved diagnostic efficiency in lung cancer Cancer Res., 72 (2012),pp. 5692-5701
    [82]
    Okano, M., Bell, D.W., Haber, D.A. et al. Cell, 99 (1999),pp. 247-257
    [83]
    Olivier, M., Hollstein, M., Hainaut, P. TP53 mutations in human cancers: origins, consequences, and clinical use Cold Spring Harb. Perspect. Biol., 2 (2010)
    [84]
    Paalman, C.H., van Leeuwen, F.E., Aaronson, N.K. et al. Employment and social benefits up to 10 years after breast cancer diagnosis: a population-based study Br. J. Cancer, 114 (2016),pp. 81-87
    [85]
    Paluszczak, J., Baer-Dubowska, W. Epigenetic diagnostics of cancer‒the application of DNA methylation markers J. Appl. Genet., 47 (2006),pp. 365-375
    [86]
    Parikh, R.B., Prasad, V. Blood-based screening for colon cancer: a disruptive innovation or simply a disruption? J. Am. Med. Assoc., 315 (2016),pp. 2519-2520
    [87]
    Pilleri, M., Antonini, A. Therapeutic strategies to prevent and manage dyskinesias in Parkinson's disease Expet Opin. Drug Saf., 14 (2015),pp. 281-294
    [88]
    Plongthongkum, N., Diep, D.H., Zhang, K. Advances in the profiling of DNA modifications: cytosine methylation and beyond Nat. Rev. Genet., 15 (2014),pp. 647-661
    [89]
    Poduri, A. Meta-analysis revives genome-wide association studies in epilepsy Epilepsy Curr., 15 (2015),pp. 122-123
    [90]
    Qureshi, I.A., Mehler, M.F. Developing epigenetic diagnostics and therapeutics for brain disorders Trends Mol. Med., 19 (2013),pp. 732-741
    [91]
    Robertson, K.D. DNA methylation and human disease Nat. Rev. Genet., 6 (2005),pp. 597-610
    [92]
    Ruzicka, W.B., Subburaju, S., Benes, F.M. Circuit- and diagnosis-specific DNA methylation changes at gamma-aminobutyric acid-related genes in postmortem human hippocampus in schizophrenia and bipolar disorder JAMA Psychiatry, 72 (2015),pp. 541-551
    [93]
    Ryan, E.J., Creagh, E.M. Emerging methods in colorectal cancer screening Br. J. Surg., 105 (2018),pp. e16-e18
    [94]
    Sanchez-Mut, J.V., Graff, J. Epigenetic alterations in Alzheimer's disease Front. Behav. Neurosci., 9 (2015),p. 347
    [95]
    Sandin, S., Lichtenstein, P., Kuja-Halkola, R. et al. The familial risk of autism J. Am. Med. Assoc., 311 (2014),pp. 1770-1777
    [96]
    Schizophrenia Working Group of the Psychiatric Genomics Consortium Biological insights from 108 schizophrenia-associated genetic loci Nature, 511 (2014),pp. 421-427
    [97]
    Schneider, L.S., Mangialasche, F., Andreasen, N. et al. Clinical trials and late-stage drug development for Alzheimer's disease: an appraisal from 1984 to 2014 J. Intern. Med., 275 (2014),pp. 251-283
    [98]
    Schroeder, F.H., Hugosson, J., Roobol, M.J. et al. Screening and prostate-cancer mortality in a randomized European study N. Engl. J. Med., 360 (2009),pp. 1320-1328
    [99]
    Schubeler, D. Function and information content of DNA methylation Nature, 517 (2015),pp. 321-326
    [100]
    Siegel, R.L., Miller, K.D., Jemal, A. Cancer statistics, 2017 CA Cancer J. Clin., 67 (2017),pp. 7-30
    [101]
    Siegel, R.L., Miller, K.D., Jemal, A. Cancer statistics, 2018 CA Cancer J. Clin., 68 (2018),pp. 7-30
    [102]
    Slamon, D.J., Leyland-Jones, B., Shak, S. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2 N. Engl. J. Med., 344 (2001),pp. 783-792
    [103]
    Slotkin, R.K., Martienssen, R. Transposable elements and the epigenetic regulation of the genome Nat. Rev. Genet., 8 (2007),pp. 272-285
    [104]
    Snyder, M.W., Kircher, M., Hill, A.J. et al. Cell, 164 (2016),pp. 57-68
    [105]
    Song, C.-X., Yin, S., Ma, L. et al. 5-Hydroxymethylcytosine signatures in cell-free DNA provide information about tumor types and stages Cell Res., 27 (2017),pp. 1231-1242
    [106]
    Song, J.Z., Stirzaker, C., Harrison, J. et al. Oncogene, 21 (2002),pp. 1048-1061
    [107]
    Song, L., Jia, J., Peng, X. et al. Sci. Rep., 7 (2017),p. 3032
    [108]
    Sorlie, T., Perou, C.M., Tibshirani, R. et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications Proc. Natl. Acad. Sci. U. S. A., 98 (2001),pp. 10869-10874
    [109]
    Stamey, T.A., Yang, N., Hay, A.R. et al. Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate N. Engl. J. Med., 317 (1987),pp. 909-916
    [110]
    Suva, M.L., Riggi, N., Bernstein, B.E. Epigenetic reprogramming in cancer Science, 339 (2013),pp. 1567-1570
    [111]
    The 1000 Genomes Project Consortium A global reference for human genetic variation Nature, 526 (2015),pp. 68-74
    [112]
    Toyooka, S., Toyooka, K.O., Harada, K. et al. Cancer Res., 62 (2002),pp. 3382-3386
    [113]
    Toyota, M., Shen, L., Ohe-Toyota, M. et al. Cancer Res., 60 (2000),pp. 4044-4048
    [114]
    Valadas, J.S., Vos, M., Verstreken, P. Therapeutic strategies in Parkinson's disease: what we have learned from animal models Ann. N. Y. Acad. Sci., 1338 (2015),pp. 16-37
    [115]
    Van Cauwenberghe, C., Van Broeckhoven, C., Sleegers, K. The genetic landscape of Alzheimer disease: clinical implications and perspectives Genet. Med., 18 (2016),pp. 421-430
    [116]
    Van Neste, L., Herman, J.G., Otto, G. et al. The epigenetic promise for prostate cancer diagnosis Prostate, 72 (2012),pp. 1248-1261
    [117]
    Vinkhuyzen, A.A., Wray, N.R., Yang, J. et al. Estimation and partition of heritability in human populations using whole-genome analysis methods Annu. Rev. Genet., 47 (2013),pp. 75-95
    [118]
    Waddington, C.H. The epigenotype. 1942 Int. J. Epidemiol., 41 (2012),pp. 10-13
    [119]
    Wang, Z., Tang, B., He, Y. et al. DNA methylation dynamics in neurogenesis Epigenomics, 8 (2016),pp. 401-414
    [120]
    Wolf, A.M.D., Wender, R.C., Etzioni, R.B. et al. American Cancer Society guideline for the early detection of prostate cancer update 2010 CA Cancer J. Clin., 60 (2010),pp. 70-98
    [121]
    Wong, C.C., Meaburn, E.L., Ronald, A. et al. Methylomic analysis of monozygotic twins discordant for autism spectrum disorder and related behavioural traits Mol. Psychiatry, 19 (2014),pp. 495-503
    [122]
    Wu, T., Giovannucci, E., Welge, J. et al. Br. J. Cancer, 105 (2011),pp. 65-73
    [123]
    Yamamoto, N., Nakayama, T., Kajita, M. et al. Breast Cancer Res. Treat., 132 (2012),pp. 165-173
    [124]
    Yao, B., Christian, K.M., He, C. et al. Epigenetic mechanisms in neurogenesis Nat. Rev. Neurosci., 17 (2016),pp. 537-549
    [125]
    Yao, B., Cheng, Y., Wang, Z. et al. DNA N6-methyladenine is dynamically regulated in the mouse brain following environmental stress Nat. Commun., 8 (2017),p. 1122
    [126]
    Yates, L.R., Gerstung, M., Knappskog, S. et al. Subclonal diversification of primary breast cancer revealed by multiregion sequencing Nat. Med., 21 (2015),pp. 751-759
    [127]
    Yeo, S., An, K.S., Hong, Y.M. et al. Neuroprotective changes in degeneration-related gene expression in the substantia nigra following acupuncture in an MPTP mouse model of Parkinsonism: microarray analysis Genet. Mol. Biol., 38 (2015),pp. 115-127
    [128]
    Ylisaukko-oja, T., Alarcon, M., Cantor, R.M. et al. Search for autism loci by combined analysis of Autism Genetic Resource Exchange and Finnish families Ann. Neurol., 59 (2006),pp. 145-155
    [129]
    Yoder, J.A., Bestor, T.H. A candidate mammalian DNA methyltransferase related to pmt1p of fission yeast Hum. Mol. Genet., 7 (1998),pp. 279-284
    [130]
    Zhubi, A., Veldic, M., Puri, N.V. et al. An upregulation of DNA-methyltransferase 1 and 3a expressed in telencephalic GABAergic neurons of schizophrenia patients is also detected in peripheral blood lymphocytes Schizophr. Res., 111 (2009),pp. 115-122
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (125) PDF downloads (8) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return