5.9
CiteScore
5.9
Impact Factor
Volume 45 Issue 3
Mar.  2018
Turn off MathJax
Article Contents

Novel DYW-type pentatricopeptide repeat (PPR) protein BLX controls mitochondrial RNA editing and splicing essential for early seed development of Arabidopsis

doi: 10.1016/j.jgg.2018.01.006
More Information
  • Corresponding author: E-mail address: shanhe@princeton.edu (Shan He); E-mail address: qulj@pku.edu.cn (Li-Jia Qu)
  • Received Date: 2018-01-09
  • Accepted Date: 2018-01-20
  • Available Online: 2018-02-14
  • Publish Date: 2018-03-20
  • In plants, RNA editing is a post-transcriptional process that changes specific cytidine to uridine in both mitochondria and plastids. Most pentatricopeptide repeat (PPR) proteins are involved in organelle RNA editing by recognizing specific RNA sequences. We here report the functional characterization of a PPR protein from the DYW subclass, Baili Xi (BLX), which contains five PPR motifs and a DYW domain. BLX is essential for early seed development, as plants lacking the BLX gene was embryo lethal and the endosperm failed to initiate cellularization. BLX was highly expressed in the embryo and endosperm, and the BLX protein was specifically localized in mitochondria, which is essential for BLX function. We found that BLX was required for the efficient editing of 36 editing sites in mitochondria. Moreover, BLX was involved in the splicing regulation of the fourth intron of nad1 and the first intron of nad2. The loss of BLX function impaired the mitochondrial function and increased the reactive oxygen species (ROS) level. Genetic complementation with truncated variants of BLX revealed that, in addition to the DYW domain, only the fifth PPR motif was essential for BLX function. The upstream sequences of the BLX-targeted editing sites are not conserved, suggesting that BLX serves as a novel and major mitochondrial editing factor (MEF) via a new non-RNA-interacting manner. This finding provides new insights into how a DYW-type PPR protein with fewer PPR motifs regulates RNA editing in plants.
  • loading
  • [1]
    Andrés-Colás, N., Zhu, Q., Takenaka, M. et al. Proc. Natl. Acad. Sci. U. S. A., 114 (2017),pp. 8883-8888
    [2]
    Andrés, C., Lurin, C., Small, I.D. The multifarious roles of PPR proteins in plant mitochondrial gene expression Physiol. Plantarum, 129 (2007),pp. 14-22
    [3]
    Barkan, A., Rojas, M., Fujii, S. et al. A combinatorial amino acid code for RNA recognition by pentatricopeptide repeat proteins PLoS Genet., 8 (2012),p. e1002910
    [4]
    Barkan, A., Small, I. Pentatricopeptide repeat proteins in plants Annu. Rev. Plant Biol., 65 (2014),pp. 415-442
    [5]
    Bassel, G.W., Mullen, R.T., Bewley, J.D. J. Exp. Bot., 57 (2006),pp. 1291-1297
    [6]
    Bentolila, S., Elliott, L.E., Hanson, M.R. Genetics, 178 (2008),pp. 1693-1708
    [7]
    Bentolila, S., Knight, W., Hanson, M. Plant Physiol., 154 (2010),pp. 1966-1982
    [8]
    Bentolila, S., Oh, J., Hanson, M.R. et al. PLoS Genet., 9 (2013),p. e1003584
    [9]
    Berg, M., Rogers, R., Muralla, R. et al. Plant J., 44 (2005),pp. 866-878
    [10]
    Berger, F. Endosperm: the crossroad of seed development Curr. Opin. Plant Biol., 6 (2003),pp. 42-50
    [11]
    Bielski, B.H.J., Shiue, G.G., Bajuk, S. J. Phys. Chem., 84 (1980),pp. 830-833
    [12]
    Bose, J., Rodrigo-Moreno, A., Shabala, S. ROS homeostasis in halophytes in the context of salinity stress tolerance J. Exp. Bot., 65 (2014),pp. 1241-1257
    [13]
    Boussardon, C., Avon, A., Kindgren, P. et al. New Phytol., 203 (2014),pp. 1090-1095
    [14]
    Braun, H.P., Binder, S., Brennicke, A. et al. The life of plant mitochondrial complex I Mitochondrion, 19 (2014),pp. 295-313
    [15]
    Chateigner-Boutin, A.L., Small, I. A rapid high-throughput method for the detection and quantification of RNA editing based on high-resolution melting of amplicons Nucleic Acids Res., 35 (2007),p. e114
    [16]
    Clough, S.J., Bent, A.F. Plant J., 16 (1998),pp. 735-743
    [17]
    Ding, Y.-H., Liu, N.-Y., Tang, Z.-S. et al. Plant Cell, 18 (2006),pp. 815-830
    [18]
    Dunand, C., Crevecoeur, M., Penel, C. New Phytol., 174 (2007),pp. 332-341
    [19]
    Elo, A., Lyznik, A., Gonzalez, D.O. et al. Plant Cell, 15 (2003),pp. 1619-1631
    [20]
    Falcon de Longevialle, A.F., Small, I.D., Lurin, C. Nuclearly encoded splicing factors implicated in RNA splicing in higher plant organelles Mol. Plant, 3 (2010),pp. 691-705
    [21]
    FarrC, J.-C., Leon, G., Jordana, X. et al. Mol. Cell. Biol., 21 (2001),pp. 6731-6737
    [22]
    Foreman, J., Demidchik, V., Bothwell, J.H. et al. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth Nature, 422 (2003),pp. 442-446
    [23]
    Fujii, S., Small, I. The evolution of RNA editing and pentatricopeptide repeat genes New Phytol., 191 (2011),pp. 37-47
    [24]
    Glass, F., Hartel, B., Zehrmann, A. et al. Mol. Plant, 8 (2015),pp. 1466-1477
    [25]
    Guillaumot, D., Lopez-Obando, M., Baudry, K. et al. Proc. Natl. Acad. Sci. U. S. A., 114 (2017),pp. 8877-8882
    [26]
    Hammani, K., Giegé, P. RNA metabolism in plant mitochondria Trends Plant Sci., 19 (2014),pp. 380-389
    [27]
    Hayes, M.L., Dang, K.N., Diaz, M.F. et al. A conserved glutamate residue in the C-terminal deaminase domain of pentatricopeptide repeat proteins is required for RNA editing activity J. Biol. Chem., 290 (2015),pp. 10136-10142
    [28]
    He, S., Sun, Y., Yang, Q. et al. PLoS Genet., 13 (2017),p. e1006553
    [29]
    Hess, W.R., Börner, T. Organellar RNA polymerases of higher plants Int. Rev. Cytol., 190 (1999),pp. 1-59
    [30]
    Hsieh, W.Y., Liao, J.C., Chang, C.Y. et al. Plant Physiol., 168 (2015),pp. 490-501
    [31]
    Hsu, S.C., Belmonte, M.F., Harada, J.J. et al. Curr. Genomics, 11 (2010),pp. 338-349
    [32]
    Ivanova, A., Law, S.R., Narsai, R. et al. Plant Physiol., 165 (2014),pp. 1233-1254
    [33]
    Joo, J.H., Bae, Y.S., Lee, J.S. Role of auxin-induced reactive oxygen species in root gravitropism Plant Physiol., 126 (2001),pp. 1055-1060
    [34]
    Kaye, Y., Golani, Y., Singer, Y. et al. Plant Physiol., 157 (2011),pp. 229-241
    [35]
    Kuhn, K., Carrie, C., Giraud, E. et al. Plant J., 67 (2011),pp. 1067-1080
    [36]
    Lee, K., Han, J.H., Park, Y.-I. et al. New Phytol., 215 (2017),pp. 202-216
    [37]
    Liszkay, A., van der Zalm, E., Schopfer, P. Production of reactive oxygen intermediates (O(2)(.-), H(2)O(2), and (.)OH) by maize roots and their role in wall loosening and elongation growth Plant Physiol., 136 (2004),pp. 3114-3123
    [38]
    Litwin, J.A. Histochemistry and cytochemistry of 3,3'-diaminobenzidine Folia Histochem. Cytochem. (Krakow), 17 (1979),pp. 3-28
    [39]
    Liu, Y.G., Mitsukawa, N., Oosumi, T. et al. Plant J., 8 (1995),pp. 457-463
    [40]
    Lurin, C., Andrés, C., Aubourg, S. et al. Plant Cell, 16 (2004),pp. 2089-2103
    [41]
    Marienfeld, J., Unseld, M., Brennicke, A. Trends Plant Sci., 4 (1999),pp. 495-502
    [42]
    Martin, M.V., Distéfano, A.M., Bellido, A. et al. Mitochondrion, 19 (2014),pp. 350-356
    [43]
    Martin, M.V., Fiol, D.F., Sundaresan, V. et al. Plant Cell, 25 (2013),pp. 1573-1591
    [44]
    Neuwirt, J., Takenaka, M., Van der Merwe, J.A. et al. RNA, 11 (2005),pp. 1563-1570
    [45]
    Okuda, K., Chateigner-Boutin, A.-L., Nakamura, T. et al. Plant Cell, 21 (2009),pp. 146-156
    [46]
    Olsen, O.-A. Plant Cell, 16 (2004),pp. S214-S227
    [47]
    Qi, W., Yang, Y., Feng, X. et al. Genetics, 205 (2017),pp. 239-249
    [48]
    Rodriguez, A.A., Grunberg Ka Fau - Taleisnik, E.L., Taleisnik, E.L. Reactive oxygen species in the elongation zone of maize leaves are necessary for leaf extension Plant Physiol., 129 (2002),pp. 1627-1632
    [49]
    Saha, D., Prasad, A.M., Srinivasan, R. Pentatricopeptide repeat proteins and their emerging roles in plants Plant Physiol. Biochem., 45 (2007),pp. 521-534
    [50]
    Salone, V., Rüdinger, M., Polsakiewicz, M. et al. A hypothesis on the identification of the editing enzyme in plant organelles FEBS Lett., 581 (2007),pp. 4132-4138
    [51]
    Schmitz-Linneweber, C., Small, I. Pentatricopeptide repeat proteins: a socket set for organelle gene expression Trends Plant Sci., 13 (2008),pp. 663-670
    [52]
    Scholl, R.L., May, S.T., Ware, D.H. Plant Physiol., 124 (2000),pp. 1477-1480
    [53]
    Shi, X., Castandet, B., Germain, A. et al. ORRM5, an RNA recognition motif-containing protein, has a unique effect on mitochondrial RNA editing J. Exp. Bot., 68 (2017),pp. 2833-2847
    [54]
    Shi, X., Germain, A., Hanson, M.R. RNA recognition motif-containing protein ORRM4 broadly affects mitochondrial RNA editing and impacts plant development and flowering Plant Physiol., 170 (2016),pp. 294-309
    [55]
    Sorensen, M.B., Mayer, U., Lukowitz, W. et al. Development, 129 (2002),pp. 5567-5576
    [56]
    Sung, T.Y., Tseng, C.C., Hsieh, M.H. Plant J., 63 (2010),pp. 499-511
    [57]
    Tang, J., Kobayashi, K., Suzuki, M. et al. The mitochondrial PPR protein LOVASTATIN INSENSITIVE 1 plays regulatory roles in cytosolic and plastidial isoprenoid biosynthesis through RNA editing Plant J., 61 (2010),pp. 456-466
    [58]
    Tzafrir, I., Pena-Muralla, R., Dickerman, A. et al. Plant Physiol., 135 (2004),pp. 1206-1220
    [59]
    Unseld, M., Marienfeld, J.R., Brandt, P. et al. Nat. Genet., 15 (1997),pp. 57-61
    [60]
    Van Breusegem, F., Dat, J.F. Reactive oxygen species in plant cell death Plant Physiol., 141 (2006),pp. 384-390
    [61]
    Verbitskiy, D., Haertel, B., Zehrmann, A. et al. FEBS Lett., 585 (2011),pp. 700-704
    [62]
    Verbitskiy, D., Zehrmann, A., van der Merwe, J.A. et al. Plant J., 61 (2010),pp. 446-455
    [63]
    Wagoner, J.A., Sun, T., Lin, L. et al. Cytidine deaminase motifs within the DYW domain of two pentatricopeptide repeat-containing proteins are required for site-specific chloroplast RNA editing J. Biol. Chem., 290 (2015),pp. 2957-2968
    [64]
    Wang, G., Zhong, M.Y., Shuai, B.L. et al. New Phytol., 214 (2017),pp. 1563-1578
    [65]
    Weissenberger, S., Soll, J., Carrie, C. Plant Mol. Biol., 93 (2017),pp. 355-368
    [66]
    Xie, T.T., Chen, D., Wu, J. et al. J. Exp. Bot., 67 (2016),pp. 5687-5698
    [67]
    Yagi, Y., Hayashi, S., Kobayashi, K. et al. Elucidation of the RNA recognition code for pentatricopeptide repeat proteins involved in organelle RNA editing in plants PLoS One, 8 (2013),p. e57286
    [68]
    Yang, Y.Z., Ding, S.O., Wang, H.C. et al. New Phytol., 214 (2017),pp. 782-795
    [69]
    Yin, P., Li, Q., Yan, C. et al. Structural basis for the modular recognition of single-stranded RNA by PPR proteins Nature, 504 (2013),pp. 168-171
    [70]
    Yoo, S.Y., Bomblies, K., Yoo, S.K. et al. Planta, 221 (2005),pp. 523-530
    [71]
    Yuan, H., Liu, D. Plant J., 70 (2012),pp. 432-444
    [72]
    Zamzami, N., Marchetti, P., Castedo, M. et al. Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death J. Exp. Med., 182 (1995),pp. 367-377
    [73]
    Zheng, X., Deng, W., Luo, K. et al. Plant Cell Rep., 26 (2007),pp. 1195-1203
    [74]
    Zhu, Q., Dugardeyn, J., Zhang, C. et al. SLO2, a mitochondrial pentatricopeptide repeat protein affecting several RNA editing sites, is required for energy metabolism Plant J., 71 (2012),pp. 836-849
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (103) PDF downloads (2) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return