5.9
CiteScore
5.9
Impact Factor
Volume 45 Issue 1
Jan.  2018
Turn off MathJax
Article Contents

Clinical significance of germline copy number variation in susceptibility of human diseases

doi: 10.1016/j.jgg.2018.01.001
More Information
  • Corresponding author: E-mail address: prof_yishen@sina.com (Yi Shen); E-mail address: xubiao3000@163.com (Biao Xu); E-mail address: thorax_demin@163.com (Demin Li)
  • Received Date: 2017-02-01
  • Accepted Date: 2018-01-02
  • Rev Recd Date: 2017-12-27
  • Available Online: 2018-01-05
  • Publish Date: 2018-01-20
  • Germline copy number variation (CNV) is considered to be an important form of human genetic polymorphisms. Previous studies have identified amounts of CNVs in human genome by advanced technologies, such as comparative genomic hybridization, single nucleotide genotyping, and high-throughput sequencing. CNV is speculated to be derived from multiple mechanisms, such as nonallelic homologous recombination (NAHR) and nonhomologous end-joining (NHEJ). CNVs cover a much larger genome scale than single nucleotide polymorphisms (SNPs), and may alter gene expression levels by means of gene dosage, gene fusion, gene disruption, and long-range regulation effects, thus affecting individual phenotypes and playing crucial roles in human pathogenesis. The number of studies linking CNVs with common complex diseases has increased dramatically in recent years. Here, we provide a comprehensive review of the current understanding of germline CNVs, and summarize the association of germline CNVs with the susceptibility to a wide variety of human diseases that were identified in recent years. We also propose potential issues that should be addressed in future studies.
  • These authors contributed equally to this work.
  • loading
  • [1]
    Abe, S., Miura, K., Kinoshita, A. et al. Copy number variation of the antimicrobial-gene, defensin beta 4, is associated with susceptibility to cervical cancer J. Hum. Genet., 58 (2013),pp. 250-253
    [2]
    Addis, L., Ahn, J.W., Dobson, R. et al. Hum. Mutat., 36 (2015),pp. 842-850
    [3]
    Aerts, E., Beckers, S., Zegers, D. et al. Obesity (Silver Spring), 24 (2016),pp. 970-976
    [4]
    Amar, S., Ovadia, O., Maier, W. et al. Behav. Brain Funct., 6 (2010),p. 40
    [5]
    Armour, J.A., Palla, R., Zeeuwen, P.L. et al. Accurate, high-throughput typing of copy number variation using paralogue ratios from dispersed repeats Nucleic Acids Res., 35 (2007),p. e19
    [6]
    Bacchelli, E., Ceroni, F., Pinto, D. et al. J. Neurodev. Disord., 6 (2014),p. 17
    [7]
    Bachmann-Gagescu, R., Mefford, H.C., Cowan, C. et al. Genet. Med., 12 (2010),pp. 641-647
    [8]
    Bi, H., Tian, T., Zhu, L. et al. Sci. Rep., 6 (2016),p. 29869
    [9]
    Biamino, E., Di Gregorio, E., Belligni, E.F. et al. A novel 3q29 deletion associated with autism, intellectual disability, psychiatric disorders, and obesity Am. J. Med. Genet. B. Neuropsychiatr. Genet., 171B (2016),pp. 290-299
    [10]
    Bochukova, E.G., Huang, N., Keogh, J. et al. Large, rare chromosomal deletions associated with severe early-onset obesity Nature, 463 (2010),pp. 666-670
    [11]
    Breukink, M.B., Schellevis, R.L., Boon, C.J. et al. Invest. Ophthalmol. Vis. Sci., 56 (2015),pp. 5608-5613
    [12]
    Carrasco-Garcia, E., Santos, J.C., Garcia, I. et al. Am. J. Cancer. Res., 6 (2016),pp. 701-713
    [13]
    Chen, Y., Tan, X., Ding, Y. et al. Biomed. Res. Int., 2016 (2016)
    [14]
    Cleynen, I., Konings, P., Robberecht, C. et al. Inflamm. Bowel Dis., 22 (2016),pp. 505-515
    [15]
    Clifford, R.J., Zhang, J., Meerzaman, D.M. et al. Genetic variations at loci involved in the immune response are risk factors for hepatocellular carcinoma Hepatology, 52 (2010),pp. 2034-2043
    [16]
    Degenhardt, J.D., de Candia, P., Chabot, A. et al. PLoS Genet., 5 (2009),p. e1000346
    [17]
    Egger, G., Roetzer, K.M., Noor, A. et al. Identification of risk genes for autism spectrum disorder through copy number variation analysis in Austrian families Neurogenetics, 15 (2014),pp. 117-127
    [18]
    El-Sayed Moustafa, J.S., Eleftherohorinou, H., de Smith, A.J. et al. Hum. Mol. Genet., 21 (2012),pp. 3727-3738
    [19]
    Falchi, M., El-Sayed Moustafa, J.S., Takousis, P. et al. Low copy number of the salivary amylase gene predisposes to obesity Nat. Genet., 46 (2014),pp. 492-497
    [20]
    Fanale, D., Iovanna, J.L., Calvo, E.L. et al. Expert Opin. Ther. Targets, 18 (2014),pp. 841-850
    [21]
    Fellermann, K., Stange, D.E., Schaeffeler, E. et al. A chromosome 8 gene-cluster polymorphism with low human beta-defensin 2 gene copy number predisposes to Crohn disease of the colon Am. J. Hum. Genet., 79 (2006),pp. 439-448
    [22]
    Feng, R., Wen, J. Biol. Chem., 396 (2015),pp. 883-891
    [23]
    Fernandez-Rozadilla, C., Cazier, J.B., Tomlinson, I. et al. A genome-wide association study on copy-number variation identifies a 11q11 loss as a candidate susceptibility variant for colorectal cancer Hum. Genet., 133 (2014),pp. 525-534
    [24]
    Frank, B., Bermejo, J.L., Hemminki, K. et al. Carcinogenesis, 28 (2007),pp. 1442-1445
    [25]
    Gazzellone, M.J., Zhou, X., Lionel, A.C. et al. Copy number variation in Han Chinese individuals with autism spectrum disorder J. Neurodev. Disord., 6 (2014),p. 34
    [26]
    Geng, J., Picker, J., Zheng, Z. et al. Chromosome microarray testing for patients with congenital heart defects reveals novel disease causing loci and high diagnostic yield BMC Genomics, 15 (2014),p. 1127
    [27]
    Girirajan, S., Dennis, M.Y., Baker, C. et al. Refinement and discovery of new hotspots of copy-number variation associated with autism spectrum disorder Am. J. Hum. Genet., 92 (2013),pp. 221-237
    [28]
    Glessner, J.T., Wang, K., Cai, G. et al. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes Nature, 459 (2009),pp. 569-573
    [29]
    Goldlust, I.S., Hermetz, K.E., Catalano, L.M. et al. Proc. Natl. Acad. Sci. U. S. A., 110 (2013),pp. 14990-14994
    [30]
    Goodier, J.L., Retrotransposons revisited: the restraint and rehabilitation of parasites Cell, 135 (2008),pp. 23-35
    [31]
    Gu, W., Zhang, F., Lupski, J.R. Mechanisms for human genomic rearrangements Pathogens, 1 (2008),p. 4
    [32]
    Handrigan, G.R., Chitayat, D., Lionel, A.C. et al. Deletions in 16q24.2 are associated with autism spectrum disorder, intellectual disability and congenital renal malformation J. Med. Genet., 50 (2013),pp. 163-173
    [33]
    Hasstedt, S.J., Xin, Y., Mao, R. et al. A copy number variant on chromosome 20q13.3 implicated in thinness and severe obesity J. Obes., 2015 (2015),p. 623431
    [34]
    Higashiyama, R., Ohnuma, T., Takebayashi, Y. et al. Am. J. Med. Genet. B Neuropsychiatr. Genet., 171B (2016),pp. 447-457
    [35]
    Hinoi, E., Takarada, T., Ueshima, T. et al. Glutamate signaling in peripheral tissues Eur. J. Biochem., 271 (2004),pp. 1-13
    [36]
    Hou, L.D., Zhang, J. Circular RNAs: an emerging type of RNA in cancer Int. J. Immunopathol. Pharmacol., 30 (2017),pp. 1-6
    [37]
    Hu, L., Wu, Y., Guan, X. et al. Am. J. Cancer. Res., 5 (2015),pp. 3056-3071
    [38]
    Huang, L., Teng, D., Wang, H. et al. Eur. J. Endocrinol., 166 (2012),pp. 727-734
    [39]
    Huang, L., Yu, D., Wu, C. et al. Copy number variation at 6q13 functions as a long-range regulator and is associated with pancreatic cancer risk Carcinogenesis, 33 (2012),pp. 94-100
    [40]
    Iwao, N., Iwao, S., Kobayashi, F. et al. No association of the mitochondrial genotype (Mt5178A/C) with six cancers in a Japanese population Asian Pac. J. Cancer Prev., 4 (2003),pp. 331-336
    [41]
    Jarick, I., Vogel, C.I., Scherag, S. et al. Novel common copy number variation for early onset extreme obesity on chromosome 11q11 identified by a genome-wide analysis Hum. Mol. Genet., 20 (2011),pp. 840-852
    [42]
    Jeon, J.P., Shim, S.M., Nam, H.Y. et al. Copy number variation at leptin receptor gene locus associated with metabolic traits and the risk of type 2 diabetes mellitus BMC Genomics, 11 (2010),p. 426
    [43]
    Jin, G., Sun, J., Liu, W. et al. Genome-wide copy-number variation analysis identifies common genetic variants at 20p13 associated with aggressiveness of prostate cancer Carcinogenesis, 32 (2011),pp. 1057-1062
    [44]
    Karlsson, R., Graae, L., Lekman, M. et al. Biol. Psychiatry, 71 (2012),pp. 922-930
    [45]
    Kim, J.H., Jung, S.H., Bae, J.S. et al. Arthritis Rheum., 65 (2013),pp. 1055-1063
    [46]
    Krepischi, A.C., Achatz, M.I., Santos, E.M. et al. Germline DNA copy number variation in familial and early-onset breast cancer Breast Cancer Res., 14 (2012),p. R24
    [47]
    Kuiper, R.P., Ligtenberg, M.J., Hoogerbrugge, N. et al. Germline copy number variation and cancer risk Curr. Opin. Genet. Dev., 20 (2010),pp. 282-289
    [48]
    Kushima, I., Aleksic, B., Nakatochi, M. et al. High-resolution copy number variation analysis of schizophrenia in Japan Mol. Psychiatr., 22 (2017),pp. 430-440
    [49]
    Kuusisto, K.M., Akinrinade, O., Vihinen, M. et al. PLoS One, 8 (2013),p. e71802
    [50]
    Laitinen, V.H., Akinrinade, O., Rantapero, T. et al. Germline copy number variation analysis in Finnish families with hereditary prostate cancer Prostate, 76 (2016),pp. 316-324
    [51]
    Lee, J.A., Carvalho, C.M., Lupski, J.R. A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders Cell, 131 (2007),pp. 1235-1247
    [52]
    Lee, M., Lee, Y., Cho, H.J. et al. Copy number variations of chromosome 17p13.1 might be linked to high risk of lung cancer in heavy smokers Mol. Biol. Rep., 38 (2011),pp. 5211-5217
    [53]
    Li, Z., Chen, J., Xu, Y. et al. Genome-wide analysis of the role of copy number variation in schizophrenia risk in Chinese Biol. Psychiatry, 80 (2016),pp. 331-337
    [54]
    Lieber, M.R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway Annu. Rev. Biochem., 79 (2010),pp. 181-211
    [55]
    Liu, B., Yang, L., Huang, B. et al. Am. J. Hum. Genet., 91 (2012),pp. 384-390
    [56]
    Liu, S., Yao, L., Ding, D. et al. PLoS One, 5 (2010),p. e15778
    [57]
    Liu, W., Sun, J., Li, G. et al. Association of a germ-line copy number variation at 2p24.3 and risk for aggressive prostate cancer Cancer Res., 69 (2009),pp. 2176-2179
    [58]
    Liu, Y.H., Wan, L., Chang, C.T. et al. J. Biomed. Sci., 18 (2011),p. 71
    [59]
    Long, J., Delahanty, R.J., Li, G. et al. J. Natl. Cancer Inst., 105 (2013),pp. 573-579
    [60]
    Low, J.S., Chin, Y.M., Mushiroda, T. et al. A genome wide study of copy number variation associated with nasopharyngeal carcinoma in malaysian Chinese identifies CNVs at 11q14.3 and 6p21.3 as candidate loci PLoS One, 11 (2016)
    [61]
    Lv, Y., He, S., Zhang, Z. et al. Rheumatol. Int., 32 (2012),pp. 3047-3053
    [62]
    Maestrini, E., Pagnamenta, A.T., Lamb, J.A. et al. Mol. Psychiatr., 15 (2010),pp. 954-968
    [63]
    Manke, I.A., Nguyen, A., Lim, D. et al. MAPKAP kinase-2 is a cell cycle checkpoint kinase that regulates the G2/M transition and S phase progression in response to UV irradiation Mol. Cell, 17 (2005),pp. 37-48
    [64]
    McKinney, C., Fanciulli, M., Merriman, M.E. et al. Association of variation in Fcgamma receptor 3B gene copy number with rheumatoid arthritis in Caucasian samples Ann. Rheum. Dis., 69 (2010),pp. 1711-1716
    [65]
    Mueller, M., Barros, P., Witherden, A.S. et al. Am. J. Hum. Genet., 92 (2013),pp. 28-40
    [66]
    Mulle, J.G., Dodd, A.F., McGrath, J.A. et al. Microdeletions of 3q29 confer high risk for schizophrenia Am. J. Hum. Genet., 87 (2010),pp. 229-236
    [67]
    Nakajima, T., Kaur, G., Mehra, N. et al. Cytogenet. Genome Res., 123 (2008),pp. 156-160
    [68]
    Ostertag, E.M., Biology of mammalian L1 retrotransposons Annu. Rev. Genet., 35 (2001),pp. 501-538
    [69]
    Pathania, M., Davenport, E.C., Muir, J. et al. Transl. Psychiatry, 4 (2014),p. e374
    [70]
    Pereira, K.M., Faria, A.G., Liphaus, B.L. et al. Rheumatology (Oxford), 55 (2016),pp. 869-873
    [71]
    Pires, R., Pires, L.M., Vaz, S.O. et al. Screening of copy number variants in the 22q11.2 region of congenital heart disease patients from the Sao Miguel Island, Azores, revealed the second patient with a triplication BMC Genet., 15 (2014),p. 115
    [72]
    Prabhanjan, M., Suresh, R.V., Murthy, M.N. et al. Type 2 diabetes mellitus disease risk genes identified by genome wide copy number variation scan in normal populations Diabetes Res. Clin. Pract., 113 (2016),pp. 160-170
    [73]
    Prans, E., Kingo, K., Traks, T. et al. Hum. Immunol., 74 (2013),pp. 792-795
    [74]
    Qi, J., Chen, Y., Copenhaver, G.P. et al. Detection of genomic variations and DNA polymorphisms and impact on analysis of meiotic recombination and genetic mapping Proc. Natl. Acad. Sci. U. S. A., 111 (2014),pp. 10007-10012
    [75]
    Rees, E., Walters, J.T., Chambert, K.D. et al. Hum. Mol. Genet., 23 (2014),pp. 1669-1676
    [76]
    Redon, R., Ishikawa, S., Fitch, K.R. et al. Global variation in copy number in the human genome Nature, 444 (2006),pp. 444-454
    [77]
    Rosenfeld, J.A., Ballif, B.C., Torchia, B.S. et al. Copy number variations associated with autism spectrum disorders contribute to a spectrum of neurodevelopmental disorders Genet. Med., 12 (2010),pp. 694-702
    [78]
    Searles Quick, V.B., Davis, J.M., Olincy, A. et al. Transl. Psychiatry, 5 (2015),p. e697
    [79]
    Sellner, L.N., Taylor, G.R. MLPA and MAPH: new techniques for detection of gene deletions Hum. Mutat., 23 (2004),pp. 413-419
    [80]
    Shinawi, M., Sahoo, T., Maranda, B. et al. 11p14.1 microdeletions associated with ADHD, autism, developmental delay, and obesity Am. J. Med. Genet. A, 155A (2011),pp. 1272-1280
    [81]
    Shishido, E., Aleksic, B., Ozaki, N. Copy-number variation in the pathogenesis of autism spectrum disorder Psychiatry Clin. Neurosci., 68 (2014),pp. 85-95
    [82]
    Soueid, J., Kourtian, S., Makhoul, N.J. et al. Sci. Rep., 6 (2016),p. 19088
    [83]
    Sui, W., Shi, Z., Xue, W. et al. Circular RNA and gene expression profiles in gastric cancer based on microarray chip technology Oncol. Rep., 37 (2017),pp. 1804-1814
    [84]
    Sun, Y., Shi, N., Lu, H. et al. Carcinogenesis, 35 (2014),pp. 1941-1950
    [85]
    Todarello, G., Feng, N., Kolachana, B.S. et al. Schizophr. Res., 155 (2014),pp. 1-7
    [86]
    Tropeano, M., Howley, D., Gazzellone, M.J. et al. J. Med. Genet., 53 (2016),pp. 536-547
    [87]
    Tse, K.P., Su, W.H., Yang, M.L. et al. A gender-specific association of CNV at 6p21.3 with NPC susceptibility Hum. Mol. Genet., 20 (2011),pp. 2889-2896
    [88]
    Van Den Bossche, M.J., Strazisar, M., Cammaerts, S. et al. Identification of rare copy number variants in high burden schizophrenia families Am. J. Med. Genet. B. Neuropsychiatr. Genet., 162B (2013),pp. 273-282
    [89]
    Vuillaume, M.L., Naudion, S., Banneau, G. et al. New candidate loci identified by array-CGH in a cohort of 100 children presenting with syndromic obesity Am. J. Med. Genet. A, 164A (2014),pp. 1965-1975
    [90]
    Weng, W., Wei, Q., Toden, S. et al. Circular RNA ciRS-7-A promising prognostic biomarker and a potential therapeutic target in colorectal cancer Clin. Cancer Res. (2017)
    [91]
    Weren, R.D., Venkatachalam, R., Cazier, J.B. et al. J. Pathol, 236 (2015),pp. 155-164
    [92]
    Wheeler, E., Huang, N., Bochukova, E.G. et al. Genome-wide SNP and CNV analysis identifies common and low-frequency variants associated with severe early-onset obesity Nat. Genet., 45 (2013),pp. 513-517
    [93]
    Willemsen, M.H., Fernandez, B.A., Bacino, C.A. et al. Eur. J. Hum. Genet., 18 (2010),pp. 429-435
    [94]
    Woodbury-Smith, M., Paterson, A.D., Thiruvahindrapduram, B. et al. Using extended pedigrees to identify novel autism spectrum disorder (ASD) candidate genes Hum. Genet., 134 (2015),pp. 191-201
    [95]
    Wyszynski, A., Hong, C.C., Lam, K. et al. Hum. Mol. Genet., 25 (2016),pp. 3863-3876
    [96]
    Xuan, D., Li, G., Cai, Q. et al. Carcinogenesis, 34 (2013),pp. 2240-2243
    [97]
    Yang, L., Liu, B., Huang, B. et al. Hum. Mol. Genet., 22 (2013),pp. 1886-1894
    [98]
    Yang, L., Liu, B., Qiu, F. et al. Carcinogenesis, 35 (2014),pp. 46-52
    [99]
    Yang, L., Lu, X., Qiu, F. et al. Eur. J. Hum. Genet., 23 (2015),pp. 1019-1024
    [100]
    Yang, T.L., Guo, Y., Shen, H. et al. Copy number variation on chromosome 10q26.3 for obesity identified by a genome-wide study J. Clin. Endocrinol. Metabol., 98 (2013),pp. E191-E195
    [101]
    Yu, B., Guan, M., Peng, Y. et al. Copy number variations of interleukin-17F, interleukin-21, and interleukin-22 are associated with systemic lupus erythematosus Arthritis Rheum., 63 (2011),pp. 3487-3492
    [102]
    Yu, B., Shao, Y., Yue, X. et al. Copy number variations of Interleukin-12B and T-bet are associated with systemic lupus erythematosus Rheumatology (Oxford), 50 (2011),pp. 1201-1205
    [103]
    Yu, K., Fan, J., Ding, X. et al. Int. J. Cancer, 135 (2014),pp. 1687-1691
    [104]
    Yuan, J., Jin, C., Sha, W. et al. Schizophr. Res., 156 (2014),pp. 66-70
    [105]
    Yuan, J., Zhao, D., Wu, L. et al. Int. J. Res. Dev., 18 (2015),pp. 392-397
    [106]
    Zarrei, M., MacDonald, J.R., Merico, D. et al. A copy number variation map of the human genome Nat. Rev. Genet., 16 (2015),pp. 172-183
    [107]
    Zhang, D., Li, Z., Wang, H. et al. Interactions between obesity-related copy number variants and dietary behaviors in childhood obesity Nutrients, 7 (2015),pp. 3054-3066
    [108]
    Zhang, X., Xu, Y., Liu, D. et al. A modified multiplex ligation-dependent probe amplification method for the detection of 22q11.2 copy number variations in patients with congenital heart disease BMC Genomics, 16 (2015),p. 364
    [109]
    Zhao, W., Niu, G., Shen, B. et al. High-resolution analysis of copy number variants in adults with simple-to-moderate congenital heart disease Am. J. Med. Genet. A, 161A (2013),pp. 3087-3094
    [110]
    Zhao, W., Wineinger, N.E., Tiwari, H.K. et al. Copy number variations associated with obesity-related traits in African Americans: a joint analysis between GENOA and HyperGEN Obesity (Silver Spring), 20 (2012),pp. 2431-2437
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (95) PDF downloads (5) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return