5.9
CiteScore
5.9
Impact Factor
Volume 45 Issue 2
Feb.  2018
Turn off MathJax
Article Contents

The current landscape for the treatment of mitochondrial disorders

doi: 10.1016/j.jgg.2017.11.008
More Information
  • Corresponding author: E-mail address: Taosheng.Huang@cchmc.org (Taosheng Huang)
  • Received Date: 2017-07-26
  • Accepted Date: 2017-11-18
  • Rev Recd Date: 2017-10-29
  • Available Online: 2018-02-14
  • Publish Date: 2018-02-20
  • The mitochondrial organelle is crucial to the energy metabolism of the eukaryotic cell. Defects in mitochondrial function lie at the core of a wide range of disorders, including both rare primary mitochondrial disorders and more common conditions such as Parkinson's disease and diabetes. Inherited defects in mitochondrial function can be found in both the nuclear genome and the mitochondrial genome, with the latter creating unique challenges in the treatment and understanding of disease passed on through the mitochondrial genome. In this review, we will describe the limited treatment regimens currently used to alleviate primary mitochondrial disorders, as well as the potential for emerging technologies (in particular, those involving direct manipulation of the mitochondrial genome) to more decisively treat this class of disease. We will also emphasize the critical parallels between primary mitochondrial disorders and more common ailments such as cancer and diabetes.
  • loading
  • [1]
    Al Rawi, S., Louvet-Vallée, S., Djeddi, A. et al. Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission Science, 334 (2011),pp. 1144-1147
    [2]
    Bacman, S.R., Williams, S.L., Garcia, S. et al. Organ-specific shifts in mtDNA heteroplasmy following systemic delivery of a mitochondria-targeted restriction endonuclease Gene Ther., 17 (2010),pp. 713-720
    [3]
    Bacman, S.R., Williams, S.L., Pinto, M. et al. Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs Nat. Med., 19 (2013),pp. 1111-1113
    [4]
    Barboni, P., Valentino, M.L., La Morgia, C. et al. Brain, 136 (2013)
    [5]
    Boch, J. TALEs of genome targeting Nat. Biotech., 29 (2011),pp. 135-136
    [6]
    Carroll, D. Genome engineering with zinc-finger nucleases Genetics, 188 (2011),pp. 773-782
    [7]
    Choulika, A., Perrin, A., Dujon, B. et al. Mol. Cell. Biol., 15 (1995),pp. 1968-1973
    [8]
    Colagar, A.H., Mosaieby, E., Seyedhassani, S.M. et al. T4216C mutation in NADH dehydrogenase I gene is associated with recurrent pregnancy loss Mitochondrial DNA, 24 (2013),pp. 610-612
    [9]
    Cong, L., Ran, F.A., Cox, D. et al. Multiplex genome engineering using CRISPR/Cas systems Science, 339 (2013),pp. 819-823
    [10]
    DeLuca, S.Z., O'Farrell, P.H. Barriers to male transmission of mitochondrial DNA in sperm development Dev. Cell, 22 (2012),pp. 660-668
    [11]
    Fantin, V.R., St-Pierre, J., Leder, P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance Cancer Cell, 9 (2006),pp. 425-434
    [12]
    Freyer, C., Cree, L.M., Mourier, A. et al. Variation in germline mtDNA heteroplasmy is determined prenatally but modified during subsequent transmission Nat. Genet., 44 (2012),pp. 1282-1285
    [13]
    Gorman, G.S., Schaefer, A.M., Ng, Y. et al. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease Ann. Neurol., 77 (2015),pp. 753-759
    [14]
    Goto, Y., Nonaka, I., Horai, S. A mutation in the tRNA(Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies Nature, 348 (1990),pp. 651-653
    [15]
    Guilinger, J.P., Pattanayak, V., Reyon, D. et al. Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity Nat. Methods, 11 (2014),pp. 429-435
    [16]
    Haas, R.H. The evidence basis for coenzyme Q therapy in oxidative phosphorylation disease Mitochondrion, 7 (2007),pp. S136-S145
    [17]
    Harman, D. Free radical theory of aging Mutat. Res., 275 (1992),pp. 257-266
    [18]
    Hashimoto, M., Bacman, S.R., Peralta, S. et al. MitoTALEN: a general approach to reduce mutant mtDNA loads and restore oxidative phosphorylation function in mitochondrial diseases Mol. Therapy, 23 (2015),pp. 1592-1599
    [19]
    Herbert, M., Turnbull, D. Mitochondrial donation - clearing the final regulatory hurdle in the United Kingdom N. Engl. J. Med., 376 (2016),pp. 171-173
    [20]
    Huang, T., Santarelli, R., Starr, A. Brain Res., 1300 (2009),pp. 97-104
    [21]
    Jiang, P., Jin, X., Peng, Y. et al. Hum. Mol. Genet., 25 (2015),pp. 584-596
    [22]
    Jinek, M., Chylinski, K., Fonfara, I. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity Science, 337 (2012),pp. 816-821
    [23]
    Jo, A., Ham, S., Lee, G.H. et al. Efficient mitochondrial genome editing by CRISPR/Cas9 BioMed Res. Int., 2015 (2015),p. 305716
    [24]
    Kang, E., Wang, X., Tippner-Hedges, R. et al. Age-related accumulation of somatic mitochondrial DNA mutations in adult-derived human iPSCs Cell Stem Cell, 18 (2016),pp. 625-636
    [25]
    Kang, E., Wu, J., Gutierrez, N.M. et al. Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial DNA mutations Nature, 540 (2016),pp. 270-275
    [26]
    Kerr, D.S. Review of clinical trials for mitochondrial disorders: 1997–2012 Neurotherapeutics, 10 (2013),pp. 307-319
    [27]
    Klopstock, T., Yu-Wai-Man, P., Dimitriadis, K. et al. A randomized placebo-controlled trial of idebenone in Leber's hereditary optic neuropathy Brain, 134 (2011),pp. 2677-2686
    [28]
    Ladoukakis, E.D., Eyre-Walker, A. Evolutionary genetics: direct evidence of recombination in human mitochondrial DNA Heredity, 93 (2004),p. 321
    [29]
    Larsson, N.G. Somatic mitochondrial DNA mutations in mammalian aging Annu. Rev. Biochem., 79 (2010),pp. 683-706
    [30]
    Lodi, R., Tonon, C., Valentino, M.L. et al. Ann. Neurol., 56 (2004),pp. 719-723
    [31]
    Lohmann, E., Periquet, M., Bonifati, V. et al. How much phenotypic variation can be attributed to parkin genotype? Ann. Neurol., 54 (2003),pp. 176-185
    [32]
    Majamaa, K., Rusanen, H., Remes, A. et al. Metabolic interventions against complex I deficiency in MELAS syndrome Mol. Cell. Biochem., 174 (1997),pp. 291-296
    [33]
    Majamaa, K., Rusanen, H., Remes, A.M. et al. Life Sci., 58 (1996),pp. 691-699
    [34]
    Moretton, A., Morel, F., Macao, B. et al. Selective mitochondrial DNA degradation following double-strand breaks PLoS One, 12 (2017)
    [35]
    Murphy, R., Turnbull, D.M., Walker, M. et al. Clinical features, diagnosis and management of maternally inherited diabetes and deafness (MIDD) associated with the 3243A>G mitochondrial point mutation Diabet. Med., 25 (2008),pp. 383-399
    [36]
    O'Connell, M., McClure, N., Lewis, S.E.M. Mitochondrial DNA deletions and nuclear DNA fragmentation in testicular and epididymal human sperm Hum. Reprod., 17 (2002),pp. 1565-1570
    [37]
    Onyango, I.G., Dennis, J., Khan, S.M. Mitochondrial dysfunction in Alzheimer's disease and the rationale for bioenergetics based therapies Aging Dis., 7 (2016),pp. 201-214
    [38]
    Ou, X.H., Sun, Q.Y. Mitochondrial replacement techniques or therapies (MRTs) to improve embryo development and to prevent mitochondrial disease transmission J.Genet. Genomics, 44 (2017),pp. 371-374
    [39]
    Penn, A.M., Lee, J.W., Thuillier, P. et al. MELAS syndrome with mitochondrial tRNA(Leu)(UUR) mutation: correlation of clinical state, nerve conduction, and muscle 31P magnetic resonance spectroscopy during treatment with nicotinamide and riboflavin Neurology, 42 (1992),pp. 2147-2152
    [40]
    Poorkaj, P., Nutt, J.G., James, D. et al. Parkin mutation analysis in clinic patients with early-onset Parkinson's disease Am. J. Med. Genet. A, 129a (2004),pp. 44-50
    [41]
    Reddy, P., Ocampo, A., Suzuki, K. et al. Selective elimination of mitochondrial mutations in the germline by genome editing Cell, 161 (2015),pp. 459-469
    [42]
    Reddy, P.H., Manczak, M., Mao, P. et al. Amyloid-beta and mitochondria in aging and Alzheimer's disease: implications for synaptic damage and cognitive decline J. Alzheimer's Dis., 20 (2010),pp. S499-S512
    [43]
    Rodriguez, M.C., MacDonald, J.R., Mahoney, D.J. et al. Beneficial effects of creatine, CoQ10, and lipoic acid in mitochondrial disorders Muscle Nerve, 35 (2007),pp. 235-242
    [44]
    Rong, Y.S., Golic, K.G. Science, 288 (2000),pp. 2013-2018
    [45]
    Safdar, A., Bourgeois, J.M., Ogborn, D.I. et al. Endurance exercise rescues progeroid aging and induces systemic mitochondrial rejuvenation in mtDNA mutator mice Proc. Natl. Acad. Sci. U. S. A., 108 (2011),pp. 4135-4140
    [46]
    Sasarman, F., Antonicka, H., Shoubridge, E.A. Hum. Mol. Genet., 17 (2008),pp. 3697-3707
    [47]
    Sato, M., Sato, K. Science, 334 (2011),pp. 1141-1144
    [48]
    Schwartz, M., Vissing, J. Paternal inheritance of mitochondrial DNA N. Engl. J. Med., 347 (2002),pp. 576-580
    [49]
    Shankar, S.P., Fingert, J.H., Carelli, V. et al. Evidence for a novel x-linked modifier locus for leber hereditary optic neuropathy Ophthalmic Genet., 29 (2008),pp. 17-24
    [50]
    Shim, H., Chun, Y.S., Lewis, B.C. et al. A unique glucose-dependent apoptotic pathway induced by c-Myc Proc. Natl. Acad. Sci. U. S. A., 95 (1998),pp. 1511-1516
    [51]
    Siddiq, I., Widjaja, E., Tein, I. Clinical and radiologic reversal of stroke-like episodes in MELAS with high-dose L-arginine Neurology, 85 (2015),pp. 197-198
    [52]
    Srivastava, S., Moraes, C.T. Manipulating mitochondrial DNA heteroplasmy by a mitochondrially targeted restriction endonuclease Hum. Mol. Genet., 10 (2001),pp. 3093-3099
    [53]
    Stacpoole, P.W., deGrauw, T.J., Feigenbaum, A.S. et al. Mitochondrion, 12 (2012),pp. 623-629
    [54]
    Tachibana, M., Sparman, M., Sritanaudomchai, H. et al. Mitochondrial gene replacement in primate offspring and embryonic stem cells Nature, 461 (2009),pp. 367-372
    [55]
    Tang, S., Le, P.K., Tse, S. et al. PLoS One, 4 (2009),p. e4492
    [56]
    Wallace, D.C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine Annu. Rev. Genet., 39 (2005),pp. 359-407
    [57]
    Wallace, D.C. Why do we still have a maternally inherited mitochondrial DNA? Insights from evolutionary medicine Annu. Rev. Biochem., 76 (2007),pp. 781-821
    [58]
    Wallace, D.C., Chalkia, D. Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease Cold Spring Harb. Perspect. Med, 3 (2013)
    [59]
    Wang, G., Shimada, E., Zhang, J. et al. Correcting human mitochondrial mutations with targeted RNA import Proc. Natl. Acad. Sci. U. S. A., 109 (2012),pp. 4840-4845
    [60]
    Warburg, O. On the origin of cancer cells Science, 123 (1956),pp. 309-314
    [61]
    Zhang, J., Liu, H., Luo, S. et al. Live birth derived from oocyte spindle transfer to prevent mitochondrial disease Reprod. Biomed. Online, 34 (2017),pp. 361-368
    [62]
    Zhou, Q., Li, H., Li, H. et al. Mitochondrial endonuclease G mediates breakdown of paternal mitochondria upon fertilization Science, 353 (2016),pp. 394-399
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (74) PDF downloads (5) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return