5.9
CiteScore
5.9
Impact Factor
Volume 45 Issue 2
Feb.  2018
Turn off MathJax
Article Contents

Genetic profiling of cancer with circulating tumor DNA analysis

doi: 10.1016/j.jgg.2017.11.006
More Information
  • Corresponding author: E-mail address: Liming.Bao@Dartmouth.edu (Liming Bao)
  • Received Date: 2017-09-09
  • Accepted Date: 2017-11-25
  • Rev Recd Date: 2017-11-24
  • Available Online: 2018-02-05
  • Publish Date: 2018-02-20
  • Circulating cell-free tumor DNA (ctDNA) in the blood is DNA released from apoptotic, circulating, and living tumor cells. ctDNA is about 140 nt in length and has a half-life of about 1.5 h. ctDNA analysis provides a noninvasive means to assess the genetic profile of cancer in real time. With the advent of molecular technologies, including digital PCR and massively parallel sequencing (MPS), ctDNA analysis has shown promise as a highly sensitive and specific alternative to conventional tissue biopsy in cancer detection, longitudinal monitoring, and precision therapy. This review provides an overview of the latest development in our understanding of the biologic characteristics, detection methodologies, and potential clinical implications of ctDNA, as well as the challenges in translating ctDNA analysis from the research arena to patient care.
  • loading
  • [1]
    Alix-Panabieres, C., Pantel, K. Challenges in circulating tumour cell research Nat. Rev. Canc., 14 (2014),pp. 623-631
    [2]
    Alix-Panabieres, C., Pantel, K. Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy Canc. Discov., 6 (2016),pp. 479-491
    [3]
    Allard, W.J., Matera, J., Miller, M.C. et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases Clin. Cancer Res., 10 (2004),pp. 6897-6904
    [4]
    Beaver, J.A., Jelovac, D., Balukrishna, S. et al. Detection of cancer DNA in plasma of patients with early-stage breast cancer Clin. Cancer Res., 20 (2014),pp. 2643-2650
    [5]
    Bettegowda, C., Sausen, M., Leary, R.J. et al. Detection of circulating tumor DNA in early- and late-stage human malignancies Sci. Transl. Med., 6 (2014),p. 224
    [6]
    Cai, Z., Yang, F., Yu, L. et al. Activated T cell exosomes promote tumor invasion via Fas signaling pathway J. Immunol., 188 (2012),pp. 5954-5961
    [7]
    Castells, A., Puig, P., Mora, J. et al. J. Clin. Oncol., 17 (1999),pp. 578-584
    [8]
    Chan, K.C., Jiang, P., Zheng, Y.W. et al. Cancer genome scanning in plasma: detection of tumor-associated copy number aberrations, single-nucleotide variants, and tumoral heterogeneity by massively parallel sequencing Clin. Chem., 59 (2013),pp. 211-224
    [9]
    Chan, K.C., Lai, P.B., Mok, T.S. et al. Quantitative analysis of circulating methylated DNA as a biomarker for hepatocellular carcinoma Clin. Chem., 54 (2008),pp. 1528-1536
    [10]
    Cohen, J.D., Javed, A.A., Thoburn, C. et al. Combined circulating tumor DNA and protein biomarker-based liquid biopsy for the earlier detection of pancreatic cancers Proc. Natl. Acad. Sci. U. S. A., 114 (2017),pp. 10202-10207
    [11]
    Cristofanilli, M., Broglio, K.R., Guarneri, V. et al. Circulating tumor cells in metastatic breast cancer: biologic staging beyond tumor burden Clin. Breast Cancer, 7 (2007),pp. 471-479
    [12]
    Dawson, S.J., Tsui, D.W., Murtaza, M. et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer N. Engl. J. Med., 368 (2013),pp. 1199-1209
    [13]
    De Mattos-Arruda, L., Weigelt, B., Cortes, J. et al. Ann. Oncol., 25 (2014),pp. 1729-1735
    [14]
    , Williams, R.T., Wu, J., Kinde, I. et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers Nature, 486 (2012),pp. 537-540
    [15]
    Diehl, F., Li, M., Dressman, D. et al. Detection and quantification of mutations in the plasma of patients with colorectal tumors Proc. Natl. Acad. Sci. U. S. A., 102 (2005),pp. 16368-16373
    [16]
    Duffy, M.J. Tumor markers in clinical practice: a review focusing on common solid cancers Med. Princ. Pract., 22 (2013),pp. 4-11
    [17]
    Duffy, M.J., van Rossum, L.G., van Turenhout, S.T. et al. Use of faecal markers in screening for colorectal neoplasia: a European group on tumor markers position paper Int. J. Cancer, 128 (2011),pp. 3-11
    [18]
    Emlen, W., Mannik, M. Clin. Exp. Immunol., 56 (1984),pp. 185-192
    [19]
    European Medicines Agency
    [20]
    Esteller, M., Sanchez-Cespedes, M., Rosell, R. et al. Detection of aberrant promoter hypermethylation of tumor suppressor genes in serum DNA from non-small cell lung cancer patients Cancer Res., 59 (1999),pp. 67-70
    [21]
    Forshew, T., Murtaza, M., Parkinson, C. et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA Sci. Transl. Med., 4 (2012),p. 136
    [22]
    Garcia-Murillas, I., Schiavon, G., Weigelt, B. et al. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer Sci. Transl. Med., 7 (2015),p. 302
    [23]
    Garcia-Olmo, D.C., Dominguez, C., Garcia-Arranz, M. et al. Cell-free nucleic acids circulating in the plasma of colorectal cancer patients induce the oncogenic transformation of susceptible cultured cells Cancer Res., 70 (2010),pp. 560-567
    [24]
    Garcia-Olmo, D.C., Garcia-Olmo, D. Biological role of cell-free nucleic acids in cancer: the theory of genometastasis Crit. Rev. Oncog., 18 (2013),pp. 153-161
    [25]
    Gautschi, O., Huegli, B., Ziegler, A. et al. Cancer Lett., 254 (2007),pp. 265-273
    [26]
    Genovese, G., Kahler, A.K., Handsaker, R.E. et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence N. Engl. J. Med., 371 (2014),pp. 2477-2487
    [27]
    Gerlinger, M., Rowan, A.J., Horswell, S. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing N. Engl. J. Med., 366 (2012),pp. 883-892
    [28]
    Gillessen, S., Omlin, A., Attard, G. et al. Management of patients with advanced prostate cancer: recommendations of the St Gallen advanced prostate cancer consensus conference (APCCC) 2015 Ann. Oncol., 26 (2015),pp. 1589-1604
    [29]
    Gorges, T.M., Penkalla, N., Schalk, T. et al. Clin. Cancer Res., 22 (2016),pp. 2197-2206
    [30]
    Hayes, D.F., Cristofanilli, M., Budd, G.T. et al. Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival Clin. Cancer Res., 12 (2006),pp. 4218-4224
    [31]
    Janne, P.A., Yang, J.C., Kim, D.W. et al. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer N. Engl. J. Med., 372 (2015),pp. 1689-1699
    [32]
    Jiang, P., Lo, Y.M. The long and short of circulating cell-free DNA and the ins and outs of molecular diagnostics Trends Genet., 32 (2016),pp. 360-371
    [33]
    Kinde, I., Wu, J., Papadopoulos, N. et al. Detection and quantification of rare mutations with massively parallel sequencing Proc. Natl. Acad. Sci. U. S. A., 108 (2011),pp. 9530-9535
    [34]
    Lebofsky, R., Decraene, C., Bernard, V. et al. Circulating tumor DNA as a non-invasive substitute to metastasis biopsy for tumor genotyping and personalized medicine in a prospective trial across all tumor types Mol. Oncol., 9 (2015),pp. 783-790
    [35]
    Lehmann-Werman, R., Neiman, D., Zemmour, H. et al. Identification of tissue-specific cell death using methylation patterns of circulating DNA Proc. Natl. Acad. Sci. U. S. A., 113 (2016),pp. E1826-E1834
    [36]
    Lo, Y.M., Chan, K.C., Sun, H. et al. Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus Sci. Transl. Med., 2 (2010),p. 61
    [37]
    Lo, Y.M., Corbetta, N., Chamberlain, P.F. et al. Presence of fetal DNA in maternal plasma and serum Lancet, 350 (1997),pp. 485-487
    [38]
    Lo, Y.M., Lun, F.M., Chan, K.C. et al. Digital PCR for the molecular detection of fetal chromosomal aneuploidy Proc. Natl. Acad. Sci. U. S. A., 104 (2007),pp. 13116-13121
    [39]
    Maire, F., Micard, S., Hammel, P. et al. Br. J. Cancer, 87 (2002),pp. 551-554
    [40]
    Mandel, P., Metais, P. Les acides nucleiques du plasma sanguin chez I'homme C. R. Seances Soc. Biol. Fil., 142 (1948),pp. 241-243
    [41]
    Meyerson, M., Gabriel, S., Getz, G. Advances in understanding cancer genomes through second-generation sequencing Nat. Rev. Genet., 11 (2010),pp. 685-696
    [42]
    Millner, L.M., Strotman, L.N. The future of precision medicine in oncology Clin. Lab. Med., 36 (2016),pp. 557-573
    [43]
    Mohan, S., Heitzer, E., Ulz, P. et al. Changes in colorectal carcinoma genomes under anti-EGFR therapy identified by whole-genome plasma DNA sequencing PLoS Genet., 10 (2014),p. e1004271
    [44]
    Mok, T.S., Wu, Y.L., Ahn, M.J. et al. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer N. Engl. J. Med., 376 (2017),pp. 629-640
    [45]
    Murtaza, M., Dawson, S.J., Tsui, D.W. et al. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA Nature, 497 (2013),pp. 108-112
    [46]
    Narayan, A., Carriero, N.J., Gettinger, S.N. et al. Ultrasensitive measurement of hotspot mutations in tumor DNA in blood using error-suppressed multiplexed deep sequencing Cancer Res., 72 (2012),pp. 3492-3498
    [47]
    Navin, N., Krasnitz, A., Rodgers, L. et al. Inferring tumor progression from genomic heterogeneity Genome Res., 20 (2010),pp. 68-80
    [48]
    Navin, N.E. Cancer genomics: one cell at a time Genome Biol., 15 (2014),p. 452
    [49]
    Newman, A.M., Bratman, S.V., To, J. et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage Nat. Med., 20 (2014),pp. 548-554
    [50]
    Oxnard, G.R., Thress, K.S., Alden, R.S. et al. Association between plasma genotyping and outcomes of treatment with osimertinib (AZD9291) in advanced non-small-cell lung cancer J. Clin. Oncol., 34 (2016),pp. 3375-3382
    [51]
    Paoletti, C., Muniz, M.C., Thomas, D.G. et al. Development of circulating tumor cell-endocrine therapy index in patients with hormone receptor-positive breast cancer Clin. Cancer Res., 21 (2015),pp. 2487-2498
    [52]
    Peinado, H., Aleckovic, M., Lavotshkin, S. et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET Nat. Med., 18 (2012),pp. 883-891
    [53]
    Phallen, J., Sausen, M., Adleff, V. et al. Direct detection of early-stage cancers using circulating tumor DNA Sci. Transl. Med., 9 (2017)
    [54]
    Reinert, T., Scholer, L.V., Thomsen, R. et al. Analysis of circulating tumour DNA to monitor disease burden following colorectal cancer surgery Gut, 65 (2016),pp. 625-634
    [55]
    Remon, J., Caramella, C., Jovelet, C. et al. Ann. Oncol., 28 (2017),pp. 784-790
    [56]
    Ross, J.S., Slodkowska, E.A. Circulating and disseminated tumor cells in the management of breast cancer Am. J. Clin. Pathol., 132 (2009),pp. 237-245
    [57]
    Rothe, F., Laes, J.F., Lambrechts, D. et al. Plasma circulating tumor DNA as an alternative to metastatic biopsies for mutational analysis in breast cancer Ann. Oncol., 25 (2014),pp. 1959-1965
    [58]
    Sharma, S. Tumor markers in clinical practice: general principles and guidelines Indian J. Med. Paediatr. Oncol., 30 (2009),pp. 1-8
    [59]
    Sheridan, C. Grail to pour $1 billion into blood test to detect early cancer Nat. Biotechnol., 35 (2017),pp. 101-102
    [60]
    Silva, J.M., Dominguez, G., Villanueva, M.J. et al. Br. J. Cancer, 80 (1999),pp. 1262-1264
    [61]
    Siravegna, G., Mussolin, B., Buscarino, M. et al. Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients Nat. Med., 21 (2015),p. 827
    [62]
    Snyder, M.W., Kircher, M., Hill, A.J. et al. Cell, 164 (2016),pp. 57-68
    [63]
    Stroun, M., Anker, P., Maurice, P. et al. Neoplastic characteristics of the DNA found in the plasma of cancer patients Oncology, 46 (1989),pp. 318-322
    [64]
    Taylor, D.D., Gercel-Taylor, C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer Gynecol. Oncol., 110 (2008),pp. 13-21
    [65]
    Thakur, B.K., Zhang, H., Becker, A. et al. Double-stranded DNA in exosomes: a novel biomarker in cancer detection Cell Res., 24 (2014),pp. 766-769
    [66]
    Thress, K.S., Brant, R., Carr, T.H. et al. Lung Canc., 90 (2015),pp. 509-515
    [67]
    Tie, J., Wang, Y., Tomasetti, C. et al. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer Sci. Transl. Med., 8 (2016),p. 346
    [68]
    Underhill, H.R., Kitzman, J.O., Hellwig, S. et al. Fragment length of circulating tumor DNA PLoS Genet., 12 (2016),p. e1006162
    [69]
    US Food and Drug Administration
    [70]
    Vogelstein, B., Papadopoulos, N., Velculescu, V.E. et al. Cancer genome landscapes Science, 339 (2013),pp. 1546-1558
    [71]
    Wan, J.C., Massie, C., Garcia-Corbacho, J. et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA Nat. Rev. Canc., 17 (2017),pp. 223-238
    [72]
    Wang, S., An, T., Wang, J. et al. Clin. Cancer Res., 16 (2010),pp. 1324-1330
    [73]
    Webb, S. The cancer bloodhounds Nat. Biotechnol., 34 (2016),pp. 1090-1094
    [74]
    Wieckowski, E.U., Visus, C., Szajnik, M. et al. J. Immunol., 183 (2009),pp. 3720-3730
    [75]
    Witwer, K.W., Buzas, E.I., Bemis, L.T. et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research J. Extracell. Vesicles, 2 (2013)
    [76]
    Witzig, T.E., Bossy, B., Kimlinger, T. et al. Detection of circulating cytokeratin-positive cells in the blood of breast cancer patients using immunomagnetic enrichment and digital microscopy Clin. Cancer Res., 8 (2002),pp. 1085-1091
    [77]
    Wood-Bouwens, C., Lau, B.T., Handy, C.M. et al. Single-color digital PCR provides high-performance detection of cancer mutations from circulating DNA J. Mol. Diagn., 19 (2017),pp. 697-710
    [78]
    Yates, L.R., Campbell, P.J. Evolution of the cancer genome Nat. Rev. Genet., 13 (2012),pp. 795-806
    [79]
    Yu, H.A., Arcila, M.E., Rekhtman, N. et al. Clin. Cancer Res., 19 (2013),pp. 2240-2247
    [80]
    Zhang, H., Liu, D., Li, S. et al. Comparison of EGFR signaling pathway somatic DNA mutations derived from peripheral blood and corresponding tumor tissue of patients with advanced non-small-cell lung cancer using liquidchip technology J. Mol. Diagn., 15 (2013),pp. 819-826
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (80) PDF downloads (4) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return