5.9
CiteScore
5.9
Impact Factor
Volume 44 Issue 9
Sep.  2017
Turn off MathJax
Article Contents

Tissue-specific genome editing of laminA/C in the posterior silk glands of Bombyx mori

doi: 10.1016/j.jgg.2017.09.003
More Information
  • Corresponding author: E-mail address: xiaqy@swu.edu.cn (Qingyou Xia)
  • Received Date: 2017-05-06
  • Accepted Date: 2017-09-13
  • Rev Recd Date: 2017-09-07
  • Available Online: 2017-09-14
  • Publish Date: 2017-09-20
  • The RNA-guided CRISPR/Cas9 system has been shown to be a powerful tool for genome editing in various organisms. A comprehensive toolbox for multiplex genome editing has been developed for the silkworm, Bombyx mori, a lepidopteran model insect of economic importance. However, as previous methods mainly relied on delivery of transient Cas9/guide RNA (gRNA), they could not be used in loss-of-function studies of essential genes. Here, we report a simple and versatile tissue-specific genome editing strategy. We perform a proof-of-principle demonstration by establishing and crossing two transgenic B. mori lines, one expressing Cas9 protein in the posterior silk glands (PSGs) and the other constitutively expressing BmlaminA/C (BmLMN) gRNA. All BmLMN alleles in the PSG cells were edited precisely at the target genome region, resulting in diverse mutations. mRNA expression of BmLMN was reduced by up to 75%, and only very low levels of BmLaminA/C protein were detected. Knockout ofBmLMN produced obvious defects in gland cell development and cocoon production. In this study, we developed an efficient strategy for spatially controlled genome editing, providing unprecedented opportunities for investigating the function of essential/lethal genes in B. mori, with potential application for other insects.
  • These two authors contributed equally to this work.
  • loading
  • [1]
    Ablain, J., Durand, E.M., Yang, S. et al. A CRISPR/Cas9 vector system for tissue-specific gene disruption in zebrafish Dev. Cell, 32 (2015),pp. 756-764
    [2]
    Bai, M., Liang, D., Wang, Y. et al. Spermatogenic cell-specific gene mutation in mice via CRISPR-Cas9 J. Genet. Genomics, 43 (2016),pp. 289-296
    [3]
    Barrangou, R., Birmingham, A., Wiemann, S. et al. Advances in CRISPR-Cas9 genome engineering: lessons learned from RNA interference Nucleic Acids Res., 43 (2015),pp. 3407-3419
    [4]
    Capanni, C., Cenni, V., Mattioli, E. et al. Failure of lamin A/C to functionally assemble in R482L mutated familial partial lipodystrophy fibroblasts: altered intermolecular interaction with emerin and implications for gene transcription Exp. Cell Res., 291 (2003),pp. 122-134
    [5]
    Cohen, M., Tzur, Y.B., Neufeld, E. et al. J. Struct. Biol., 140 (2002),pp. 232-240
    [6]
    Cong, L., Ran, F.A., Cox, D. et al. Multiplex genome engineering using CRISPR/Cas systems Science, 339 (2013),pp. 819-823
    [7]
    Corrigan-Curay, J., O'Reilly, M., Kohn, D.B. et al. Genome editing technologies: defining a path to clinic Mol. Ther., 23 (2015),pp. 796-806
    [8]
    Courtney, D.G., Moore, J.E., Atkinson, S.D. et al. Gene Ther., 23 (2016),pp. 108-112
    [9]
    Cox, D.B., Platt, R.J., Zhang, F. Therapeutic genome editing: prospects and challenges Nat. Med., 21 (2015),pp. 121-131
    [10]
    Dahl, K.N., Ribeiro, A.J., Lammerding, J. Nuclear shape, mechanics, and mechanotransduction Circ. Res., 102 (2008),pp. 1307-1318
    [11]
    Di Donato, V., De Santis, F., Auer, T.O. et al. 2C-Cas9: a versatile tool for clonal analysis of gene function Genome Res., 26 (2016),pp. 681-692
    [12]
    Ding, Q., Strong, A., Patel, K.M. et al. Circ. Res., 115 (2014),pp. 488-492
    [13]
    Edgar, B.A., Orr-Weaver, T.L. Endoreplication cell cycles: more for less Cell, 105 (2001),pp. 297-306
    [14]
    Gage, L.P. J. Mol. Biol., 86 (1974),pp. 97-108
    [15]
    Goldman, R.D., Shumaker, D.K., Erdos, M.R. et al. Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome Proc. Natl. Acad. Sci. U. S. A., 101 (2004),pp. 8963-8968
    [16]
    Horn, C., Wimmer, E.A. A versatile vector set for animal transgenesis Dev. Genes Evol., 210 (2000),pp. 630-637
    [17]
    Hsu, P.D., Lander, E.S., Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering Cell, 157 (2014),pp. 1262-1278
    [18]
    Hu, W., Kaminski, R., Yang, F. et al. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection Proc. Natl. Acad. Sci. U. S. A., 111 (2014),pp. 11461-11466
    [19]
    Lammerding, J., Fong, L.G., Ji, J.Y. et al. Lamins A and C but not lamin B1 regulate nuclear mechanics J. Biol. Chem., 281 (2006),pp. 25768-25780
    [20]
    Liu, J., Rolef Ben-Shahar, T., Riemer, D. et al. Mol. Biol. Cell, 11 (2000),pp. 3937-3947
    [21]
    Liu, Y., Ma, S., Wang, X. et al. Insect Biochem. Mol. Biol., 49 (2014),pp. 35-42
    [22]
    Ma, S., Chang, J., Wang, X. et al. Sci. Rep., 4 (2014),p. 4489
    [23]
    Ma, S., Zhang, S., Wang, F. et al. Highly efficient and specific genome editing in silkworm using custom TALENs PLoS One, 7 (2012),p. e45035
    [24]
    Ma, S.Y., Wang, X.G., Fei, J.T. et al. Genetic marking of sex using a W chromosome-linked transgene Insect Biochem. Mol. Biol., 43 (2013),pp. 1079-1086
    [25]
    Maeder, M.L., Gersbach, C.A. Genome-editing technologies for gene and cell therapy Mol. Ther., 24 (2016),pp. 430-446
    [26]
    Maeder, M.L., Linder, S.J., Cascio, V.M. et al. CRISPR RNA-guided activation of endogenous human genes Nat. Methods, 10 (2013),pp. 977-979
    [27]
    Mali, P., Yang, L., Esvelt, K.M. et al. RNA-guided human genome engineering via Cas9 Science, 339 (2013),pp. 823-826
    [28]
    Mei, Y., Wang, Y., Chen, H. et al. Recent progress in CRISPR/Cas9 technology J. Genet. Genomics, 43 (2016),pp. 63-75
    [29]
    Mezzadra, R., Hollenstein, A., Gomez-Eerland, R. et al. A traceless selection: counter-selection system that allows efficient generation of transposon and CRISPR-modified T-cell products Mol. Ther. Nucleic Acids, 5 (2016),p. e298
    [30]
    Munkacsy, G., Sztupinszki, Z., Herman, P. et al. Validation of RNAi silencing wfficiency using gene array data shows 18.5% failure rate across 429 independent experiments Mol. Ther. Nucleic Acids, 5 (2016),p. e366
    [31]
    Popp, M.W., Maquat, L.E. Leveraging rules of nonsense-mediated mRNA decay for genome engineering and personalized medicine Cell, 165 (2016),pp. 1319-1322
    [32]
    Prokocimer, M., Davidovich, M., Nissim-Rafinia, M. et al. Nuclear lamins: key regulators of nuclear structure and activities J. Cell Mol. Med., 13 (2009),pp. 1059-1085
    [33]
    Qi, L.S., Larson, M.H., Gilbert, L.A. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression Cell, 152 (2013),pp. 1173-1183
    [34]
    Sabatelli, P., Lattanzi, G., Ognibene, A. et al. Nuclear alterations in autosomal-dominant Emery-Dreifuss muscular dystrophy Muscle Nerve, 24 (2001),pp. 826-829
    [35]
    Shalem, O., Sanjana, N.E., Hartenian, E. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells Science, 343 (2014),pp. 84-87
    [36]
    Suetsugu, Y., Futahashi, R., Kanamori, H. et al. (Bethesda), 3 (2013),pp. 1481-1492
    [37]
    Sugimoto-Shirasu, K., Roberts, K. “Big it up”: endoreduplication and cell-size control in plants Curr. Opin. Plant Biol., 6 (2003),pp. 544-553
    [38]
    Suzuki, Y., Gage, L.P., Brown, D.D. J. Mol. Biol., 70 (1972),pp. 637-649
    [39]
    Takasu, Y., Kobayashi, I., Beumer, K. et al. Insect Biochem. Mol. Biol., 40 (2010),pp. 759-765
    [40]
    Terenius, O., Papanicolaou, A., Garbutt, J.S. et al. RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design J. Insect Physiol., 57 (2011),pp. 231-245
    [41]
    Thomas, D.D., Donnelly, C.A., Wood, R.J. et al. Insect population control using a dominant, repressible, lethal genetic system Science, 287 (2000),pp. 2474-2476
    [42]
    Wang, T., Wei, J.J., Sabatini, D.M. et al. Genetic screens in human cells using the CRISPR-Cas9 system Science, 343 (2014),pp. 80-84
    [43]
    Wang, Y., Li, Z., Xu, J. et al. Cell Res., 23 (2013),pp. 1414-1416
    [44]
    Wiesel, N., Mattout, A., Melcer, S. et al. Laminopathic mutations interfere with the assembly, localization, and dynamics of nuclear lamins Proc. Natl. Acad. Sci. U. S. A., 105 (2008),pp. 180-185
    [45]
    Xie, K., Minkenberg, B., Yang, Y. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system Proc. Natl. Acad. Sci. U. S. A., 112 (2015),pp. 3570-3575
    [46]
    Xu, L., Park, K.H., Zhao, L. et al. CRISPR-mediated genome editing restores dystrophin expression and function in mdx mice Mol. Ther., 24 (2016),pp. 564-569
    [47]
    Zhang, C.D., Li, F.F., Chen, X.Y. et al. J. Insect. Physiol., 58 (2012),pp. 974-978
    [48]
    Zuleger, N., Boyle, S., Kelly, D.A. et al. Specific nuclear envelope transmembrane proteins can promote the location of chromosomes to and from the nuclear periphery Genome Biol., 14 (2013),p. R14
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (81) PDF downloads (3) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return