5.9
CiteScore
5.9
Impact Factor
Volume 44 Issue 9
Sep.  2017
Turn off MathJax
Article Contents

Gene editing in T cell therapy

doi: 10.1016/j.jgg.2017.09.002
More Information
  • Corresponding author: E-mail address: wanghaoyi@ioz.ac.cn (Haoyi Wang)
  • Received Date: 2017-07-31
  • Accepted Date: 2017-09-04
  • Rev Recd Date: 2017-08-28
  • Available Online: 2017-09-28
  • Publish Date: 2017-09-20
  • The adoptive transfer of engineered T cells for the treatment of cancer, autoimmunity, and infectious disease is a rapidly growing field that has shown great promise. Gene editing holds tremendous potential for further improvements of T cell therapy. Here we review the applications of gene editing in various T cell therapies, focusing on antiviral strategies and cancer immunotherapies, and discuss the challenges and future prospects.
  • These two authors contributed equally to this work.
  • loading
  • [1]
    Ahmed, N., Brawley, V.S., Hegde, M. et al. Human epidermal growth factor receptor 2 (HER2) -specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma J. Clin. Oncol., 33 (2015),pp. 1688-1696
    [2]
    Aparicio, S., Hidalgo, M., Kung, A.L. Examining the utility of patient-derived xenograft mouse models Nat. Rev. Cancer, 15 (2015),pp. 311-316
    [3]
    Barber, D.L., Wherry, E.J., Masopust, D. et al. Restoring function in exhausted CD8 T cells during chronic viral infection Nature, 439 (2006),pp. 682-687
    [4]
    Beane, J.D., Lee, G., Zheng, Z. et al. Clinical scale zinc finger nuclease-mediated gene editing of PD-1 in tumor infiltrating lymphocytes for the treatment of metastatic melanoma Mol. Ther., 23 (2015),pp. 1380-1390
    [5]
    Berdien, B., Mock, U., Atanackovic, D. et al. TALEN-mediated editing of endogenous T-cell receptors facilitates efficient reprogramming of T lymphocytes by lentiviral gene transfer Gene Ther., 21 (2014),pp. 539-548
    [6]
    Bogdanove, A.J., Voytas, D.F. TAL effectors: customizable proteins for DNA targeting Science, 333 (2011),pp. 1843-1846
    [7]
    Brentjens, R.J., Davila, M.L., Riviere, I. et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia Sci. Transl. Med., 5 (2013)
    [8]
    Brown, C.E., Badie, B., Barish, M.E. et al. Clin. Cancer Res., 21 (2015),pp. 4062-4072
    [9]
    Cannon, P.M., Kohn, D.B., Kiem, H.P. HIV eradication–from Berlin to Boston Nat. Biotechnol., 32 (2014),pp. 315-316
    [10]
    Cho, S.W., Kim, S., Kim, J.M. et al. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease Nat. Biotechnol., 31 (2013),pp. 230-232
    [11]
    Cole, D.J., Weil, D.P., Shilyansky, J. et al. Characterization of the functional specificity of a cloned T-cell receptor heterodimer recognizing the MART-1 melanoma antigen Cancer Res., 55 (1995),pp. 748-752
    [12]
    Couzin-Frankel, J. Breakthrough of the year 2013. Cancer immunotherapy Science, 342 (2013),pp. 1432-1433
    [13]
    Deng, H., Liu, R., Ellmeier, W. et al. Identification of a major co-receptor for primary isolates of HIV-1 Nature, 381 (1996),pp. 661-666
    [14]
    Didigu, C.A., Wilen, C.B., Wang, J. et al. Blood, 123 (2014),pp. 61-69
    [15]
    Doitsh, G., Galloway, N.L., Geng, X. et al. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection Nature, 505 (2014),pp. 509-514
    [16]
    Doudna, J.A., Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9 Science, 346 (2014),p. 1258096
    [17]
    Douek, D.C., Brenchley, J.M., Betts, M.R. et al. Nature, 417 (2002),pp. 95-98
    [18]
    Dragic, T., Litwin, V., Allaway, G.P. et al. Nature, 381 (1996),pp. 667-673
    [19]
    Dudley, M.E., Wunderlich, J.R., Robbins, P.F. et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes Science, 298 (2002),pp. 850-854
    [20]
    Dudley, M.E., Yang, J.C., Sherry, R. et al. Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens J. Clin. Oncol., 26 (2008),pp. 5233-5239
    [21]
    Ebina, H., Kanemura, Y., Misawa, N. et al. A high excision potential of TALENs for integrated DNA of HIV-based lentiviral vector PLoS One, 10 (2015),p. e0120047
    [22]
    Ebina, H., Misawa, N., Kanemura, Y. et al. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus Sci. Rep., 3 (2013),p. 2510
    [23]
    Eyquem, J., Mansilla-Soto, J., Giavridis, T. et al. Nature, 543 (2017),pp. 113-117
    [24]
    Finney, H.M., Akbar, A., Lawson, A. Activation of resting human primary T cells with chimeric receptors: costimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCR chain J. Immunol., 172 (2004),pp. 104-113
    [25]
    Freeman, G.J., Long, A.J., Iwai, Y. et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation J. Exp. Med., 192 (2000),pp. 1027-1034
    [26]
    Frock, R.L., Hu, J., Meyers, R.M. et al. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases Nat. Biotechnol., 33 (2015),pp. 179-186
    [27]
    Gabriel, R., Lombardo, A., Arens, A. et al. An unbiased genome-wide analysis of zinc-finger nuclease specificity Nat. Biotechnol., 29 (2011),pp. 816-823
    [28]
    Gorak-Stolinska, P., Truman, J.P., Kemeny, D.M. et al. Activation-induced cell death of human T-cell subsets is mediated by Fas and granzyme B but is independent of TNF-alpha J. Leukoc. Biol., 70 (2001),pp. 756-766
    [29]
    Gross, G., Waks, T., Eshhar, Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity Proc. Natl. Acad. Sci. U. S. A., 86 (1989),pp. 10024-10028
    [30]
    Grupp, S.A., Kalos, M., Barrett, D. et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia N. Engl. J. Med., 368 (2013),pp. 1509-1518
    [31]
    Hamid, O., Robert, C., Daud, A. et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma N. Engl. J. Med., 369 (2013),pp. 134-144
    [32]
    Hendel, A., Bak, R.O., Clark, J.T. et al. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells Nat. Biotechnol., 33 (2015),p. 985
    [33]
    Hirano, F., Kaneko, K., Tamura, H. et al. Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity Cancer Res., 65 (2005),pp. 1089-1096
    [34]
    Hodi, F.S., O'Day, S.J., McDermott, D.F. et al. Improved survival with ipilimumab in patients with metastatic melanoma N. Engl. J. Med., 363 (2010),pp. 711-723
    [35]
    Hoffman, R.M. Patient-derived orthotopic xenografts: better mimic of metastasis than subcutaneous xenografts Nat. Rev. Cancer, 15 (2015),pp. 451-452
    [36]
    Hoffmann, C. The epidemiology of HIV coreceptor tropism Eur. J. Med. Res., 12 (2007),pp. 385-390
    [37]
    Holt, N., Wang, J., Kim, K. et al. Nat. Biotechnol., 28 (2010),pp. 839-847
    [38]
    Hsu, P.D., Lander, E.S., Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering Cell, 157 (2014),pp. 1262-1278
    [39]
    Hu, W., Kaminski, R., Yang, F. et al. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection Proc. Natl. Acad. Sci. U. S. A., 111 (2014),pp. 11461-11466
    [40]
    Hultquist, J.F., Schumann, K., Woo, J.M. et al. A Cas9 ribonucleoprotein platform for functional genetic studies of HIV-host interactions in primary human T cells Cell Rep., 17 (2016),pp. 1438-1452
    [41]
    Hutter, G., Nowak, D., Mossner, M. et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation N. Engl. J. Med., 360 (2009),pp. 692-698
    [42]
    Imai, C., Mihara, K., Andreansky, M. et al. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia Leukemia, 18 (2004),pp. 676-684
    [43]
    June, C.H., Riddell, S.R., Schumacher, T.N. Adoptive cellular therapy: a race to the finish line Sci. Transl. Med., 7 (2015)
    [44]
    Kalams, S.A., Buchbinder, S.P., Rosenberg, E.S. et al. Association between virus-specific cytotoxic T-lymphocyte and helper responses in human immunodeficiency virus type 1 infection J. Virol., 73 (1999),pp. 6715-6720
    [45]
    Kalos, M., Levine, B.L., Porter, D.L. et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia Sci. Transl. Med., 3 (2011),p. 9
    [46]
    Karwacz, K., Bricogne, C., MacDonald, D. et al. EMBO Mol. Med., 3 (2011),pp. 581-592
    [47]
    Katz, S.C., Burga, R.A., McCormack, E. et al. Clin. Cancer Res., 21 (2015),pp. 3149-3159
    [48]
    Kershaw, M.H., Westwood, J.A., Parker, L.L. et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer Clin. Cancer Res., 12 (2006),pp. 6106-6115
    [49]
    Khalil, D.N., Smith, E.L., Brentjens, R.J. et al. The future of cancer treatment: immunomodulation, CARs and combination immunotherapy Nat. Rev. Clin. Oncol., 13 (2016),pp. 273-290
    [50]
    Kim, D., Bae, S., Park, J. et al. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells Nat. Methods, 12 (2015),pp. 237-243
    [51]
    Kleinstiver, B.P., Pattanayak, V., Prew, M.S. et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects Nature, 529 (2016),pp. 490-495
    [52]
    Kowolik, C.M., Topp, M., Gonzalez, S. et al. Cancer Res., 66 (2006),pp. 10995-11004
    [53]
    Kunkele, A., Johnson, A.J., Rolczynski, L.S. et al. Cancer Immunol. Res., 3 (2015),pp. 368-379
    [54]
    Lamers, C.H., Sleijfer, S., van Steenbergen, S. et al. Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity Mol. Ther., 21 (2013),pp. 904-912
    [55]
    Lee, D.W., Kochenderfer, J.N., Stetler-Stevenson, M. et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial Lancet, 385 (2015),pp. 517-528
    [56]
    Lee, H., Park, S., Choi, B.K. et al. J. Immunol., 169 (2002),pp. 4882-4888
    [57]
    Li, C., Guan, X.W., Du, T. et al. J. Gen. Virol., 96 (2015),pp. 2381-2393
    [58]
    Li, L., Krymskaya, L., Wang, J. et al. Mol. Ther., 21 (2013),pp. 1259-1269
    [59]
    Liu, R., Paxton, W.A., Choe, S. et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection Cell, 86 (1996),pp. 367-377
    [60]
    Liu, X., Zhang, Y., Cheng, C. et al. CRISPR-Cas9-mediated multiplex gene editing in CAR-T cells Cell Res., 27 (2017),pp. 154-157
    [61]
    Lloyd, A., Vickery, O.N., Laugel, B. Beyond the antigen receptor: editing the genome of T-cells for cancer adoptive cellular therapies Front. Immunol., 4 (2013),p. 221
    [62]
    Lombardo, A., Cesana, D., Genovese, P. et al. Site-specific integration and tailoring of cassette design for sustainable gene transfer Nat. Methods, 8 (2011),pp. 861-869
    [63]
    Louis, C.U., Savoldo, B., Dotti, G. et al. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma Blood, 118 (2011),pp. 6050-6056
    [64]
    MacLeod, D.T., Antony, J., Martin, A.J. et al. Integration of a CD19 CAR into the TCR alpha chain locus streamlines production of allogeneic gene-edited CAR T cells Mol. Ther., 25 (2017),pp. 949-961
    [65]
    Maher, S., Toomey, D., Condron, C. et al. Activation-induced cell death: the controversial role of Fas and Fas ligand in immune privilege and tumour counterattack Immunol. Cell Biol., 80 (2002),pp. 131-137
    [66]
    Mandal, P.K., Ferreira, L.M.R., Collins, R.L. et al. Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9 Cell Stem Cell, 15 (2014),pp. 643-652
    [67]
    Maude, S.L., Frey, N., Shaw, P.A. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia N. Engl. J. Med., 371 (2014),pp. 1507-1517
    [68]
    McCune, J.M. Nature, 410 (2001),pp. 974-979
    [69]
    Mei, Y., Wang, Y., Chen, H. et al. Recent progress in CRISPR/Cas9 technology J. Genet. Genomics, 43 (2016),pp. 63-75
    [70]
    Menger, L., Sledzinska, A., Bergerhoff, K. et al. TALEN-mediated inactivation of PD-1 in tumor-reactive lymphocytes promotes intratumoral T-cell persistence and rejection of established tumors Canc. Res., 76 (2016),pp. 2087-2093
    [71]
    Miller, J.C., Holmes, M.C., Wang, J. et al. An improved zinc-finger nuclease architecture for highly specific genome editing Nat. Biotechnol., 25 (2007),pp. 778-785
    [72]
    Milone, M.C., Fish, J.D., Carpenito, C. et al. Mol. Ther., 17 (2009),pp. 1453-1464
    [73]
    Morgan, R.A., Dudley, M.E., Wunderlich, J.R. et al. Cancer regression in patients after transfer of genetically engineered lymphocytes Science, 314 (2006),pp. 126-129
    [74]
    Morgan, R.A., Yang, J.C., Kitano, M. et al. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2 Mol. Ther., 18 (2010),pp. 843-851
    [75]
    Mussolino, C., Alzubi, J., Fine, E.J. et al. TALENs facilitate targeted genome editing in human cells with high specificity and low cytotoxicity Nucleic Acids Res., 42 (2014),pp. 6762-6773
    [76]
    Nguyen, L.T., Ohashi, P.S. Clinical blockade of PD1 and LAG3–potential mechanisms of action Nat. Rev. Immunol., 15 (2015),pp. 45-56
    [77]
    Nishimura, H., Nose, M., Hiai, H. et al. Immunity, 11 (1999),pp. 141-151
    [78]
    Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy Nat. Rev. Cancer, 12 (2012),pp. 252-264
    [79]
    Park, J.R., Digiusto, D.L., Slovak, M. et al. Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma Mol. Ther., 15 (2007),pp. 825-833
    [80]
    Patel, S., Jones, R.B., Nixon, D.F. et al. T-cell therapies for HIV: preclinical successes and current clinical strategies Cytotherapy, 18 (2016),pp. 931-942
    [81]
    Peled, A., Petit, I., Kollet, O. et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4 Science, 283 (1999),pp. 845-848
    [82]
    Perez, E.E., Wang, J., Miller, J.C. et al. Nat. Biotechnol., 26 (2008),pp. 808-816
    [83]
    Pignatti, P., Massa, M., Travaglino, P. et al. Activation-induced cell death and Fas-induced apoptosis in patients with systemic or polyarticular juvenile idiopathic arthritis Clin. Exp. Rheumatol., 19 (2001),pp. 339-344
    [84]
    Poirot, L., Philip, B., Schiffer-Mannioui, C. et al. Multiplex genome-edited T-cell manufacturing platform for “off-the-shelf” adoptive T-cell immunotherapies Cancer Res., 75 (2015),pp. 3853-3864
    [85]
    Qasim, W., Zhan, H., Samarasinghe, S. et al. Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells Sci. Transl. Med., 9 (2017)
    [86]
    Qu, X., Wang, P., Ding, D. et al. Zinc-finger-nucleases mediate specific and efficient excision of HIV-1 proviral DNA from infected and latently infected human T cells Nucleic Acids Res., 41 (2013),pp. 7771-7782
    [87]
    Ren, J., Liu, X., Fang, C. et al. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition Clin. Cancer Res., 23 (2017),pp. 2255-2266
    [88]
    Ren, J., Zhang, X., Liu, X. et al. A versatile system for rapid multiplex genome-edited CAR T cell generation Oncotarget, 8 (2017),pp. 17002-17011
    [89]
    Ribas, A., Hamid, O., Daud, A. et al. Association of pembrolizumab with tumor response and survival among patients with advanced melanoma , 315 (2016),pp. 1600-1609
    [90]
    Rosenberg, S.A., Packard, B.S., Aebersold, P.M. et al. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report N. Engl. J. Med., 319 (1988),pp. 1676-1680
    [91]
    Rosenberg, S.A., Yang, J.C., Sherry, R.M. et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy Clin. Cancer Res., 17 (2011),pp. 4550-4557
    [92]
    Samson, M., Libert, F., Doranz, B.J. et al. Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene Nature, 382 (1996),pp. 722-725
    [93]
    Sather, B.D., Romano Ibarra, G.S., Sommer, K. et al. Sci. Transl. Med., 7 (2015)
    [94]
    Savoldo, B., Ramos, C.A., Liu, E. et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor–modified T cells in lymphoma patients J. Clin. Invest., 121 (2011),pp. 1822-1826
    [95]
    Schietinger, A., Greenberg, P.D. Tolerance and exhaustion: defining mechanisms of T cell dysfunction Trends Immunol., 35 (2014),pp. 51-60
    [96]
    Schumann, K., Lin, S., Boyer, E. et al. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins Proc. Natl. Acad. Sci. U. S. A., 112 (2015),pp. 10437-10442
    [97]
    Shmakov, S., Abudayyeh, O.O., Makarova, K.S. et al. Discovery and functional characterization of diverse class 2 CRISPR-cas systems Mol. Cell, 60 (2015),pp. 385-397
    [98]
    Slaymaker, I.M., Gao, L., Zetsche, B. et al. Rationally engineered Cas9 nucleases with improved specificity Science, 351 (2016),pp. 84-88
    [99]
    Su, S., Hu, B., Shao, J. et al. CRISPR-Cas9 mediated efficient PD-1 disruption on human primary T cells from cancer patients Sci. Rep., 6 (2016),p. 20070
    [100]
    Su, S., Hu, B., Shao, J. et al. Corrigendum: CRISPR-Cas9 mediated efficient PD-1 disruption on human primary T cells from cancer patients Sci. Rep., 7 (2017),p. 40272
    [101]
    Swarts, D.C., Jore, M.M., Westra, E.R. et al. DNA-guided DNA interference by a prokaryotic Argonaute Nature, 507 (2014),pp. 258-261
    [102]
    Szczepek, M., Brondani, V., Buchel, J. et al. Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases Nat. Biotechnol., 25 (2007),pp. 786-793
    [103]
    Tebas, P., Stein, D., Tang, W.W. et al. N. Engl. J. Med., 370 (2014),pp. 901-910
    [104]
    Topalian, S.L., Drake, C.G., Pardoll, D.M. Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity Curr. Opin. Immunol., 24 (2012),pp. 207-212
    [105]
    Torikai, H., Reik, A., Liu, P.Q. et al. A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR Blood, 119 (2012),pp. 5697-5705
    [106]
    Torikai, H., Reik, A., Soldner, F. et al. Toward eliminating HLA class I expression to generate universal cells from allogeneic donors Blood, 122 (2013),pp. 1341-1349
    [107]
    Tsai, S.Q., Zheng, Z., Nguyen, N.T. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases Nat. Biotechnol., 33 (2015),pp. 187-197
    [108]
    Urnov, F.D., Rebar, E.J., Holmes, M.C. et al. Genome editing with engineered zinc finger nucleases Nat. Rev. Genet., 11 (2010),pp. 636-646
    [109]
    Valton, J., Guyot, V., Marechal, A. et al. A multidrug-resistant engineered CAR T cell for allogeneic combination immunotherapy Mol. Ther., 23 (2015),pp. 1507-1518
    [110]
    von Kalle, C., Deichmann, A., Schmidt, M. Vector integration and tumorigenesis Hum. Gene. Ther., 25 (2014),pp. 475-481
    [111]
    Wang, X., Wang, Y., Wu, X. et al. Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors Nat. Biotechnol., 33 (2015),pp. 175-178
    [112]
    Wherry, E.J. T cell exhaustion Nat. Immunol., 12 (2011),pp. 492-499
    [113]
    Wherry, E.J., Kurachi, M. Molecular and cellular insights into T cell exhaustion Nat. Rev. Immunol., 15 (2015),pp. 486-499
    [114]
    Wilen, C.B., Wang, J., Tilton, J.C. et al. PLoS Pathog., 7 (2011),p. e1002020
    [115]
    Woo, S.R., Turnis, M.E., Goldberg, M.V. et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape Cancer Res., 72 (2012),pp. 917-927
    [116]
    Xu, L., Yang, H., Gao, Y. et al. Mol. Ther., 25 (2017),pp. 1782-1789
    [117]
    Yang, L., Guell, M., Byrne, S. et al. Optimization of scarless human stem cell genome editing Nucleic Acids Res., 41 (2013),pp. 9049-9061
    [118]
    Yuan, J., Wang, J., Crain, K. et al. Mol. Ther., 20 (2012),pp. 849-859
    [119]
    Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system Cell, 163 (2015),pp. 759-771
    [120]
    Zhang, Y., Zhang, X., Cheng, C. et al. Front. Med. (2017)
    [121]
    Zhu, W., Lei, R., Le Duff, Y. et al. The CRISPR/Cas9 system inactivates latent HIV-1 proviral DNA Retrovirology, 12 (2015),p. 22
    [122]
    Zitvogel, L., Kroemer, G. Targeting PD-1/PD-L1 interactions for cancer immunotherapy Oncoimmunology, 1 (2012),pp. 1223-1225
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (85) PDF downloads (6) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return