5.9
CiteScore
5.9
Impact Factor
Volume 44 Issue 11
Nov.  2017
Turn off MathJax
Article Contents

Site-specific transfer of chromosomal segments and genes in wheat engineered chromosomes

doi: 10.1016/j.jgg.2017.08.005
More Information
  • Corresponding author: E-mail address: fphan@genetics.ac.cn (Fangpu Han)
  • Received Date: 2017-04-06
  • Accepted Date: 2017-08-07
  • Rev Recd Date: 2017-07-30
  • Available Online: 2017-11-13
  • Publish Date: 2017-11-20
  • Recently, engineered minichromosomes have been produced using a telomere-mediated truncation technique in some plants. However, the study on transferring genes to minichromosomes is very limited. Here, telomere-mediated truncation was successfully performed in common wheat (Triticum aestivum) to generate stable truncated chromosomes accompanied by a relatively high frequency of chromosomal rearrangements. After the cross between transgenic parents, a promoter-less DsRed gene in a chromosome from one parent was transferred to another chromosome from the other parent at the site behind a maize ubiquitin promoter via the Cre/lox system. DsRed transcripts and red fluorescent proteins were detected in the recombinant plants. In one such seedling, transgenic signals were detected at the centric terminus of chromosome 4D and the distal terminus of chromosome 3A. Clear translocations could be detected at the transgenic loci of these two chromosomes. Intriguingly, signals of centric-specific sequences were co-localized with the translocated D-group chromosomal segment in the terminal region of chromosome 3A. Our results indicate that the Cre/lox system induces the gene swapping to the target chromosome and non-homologous chromosomal recombination simultaneously. These approaches could offer a platform to transfer large DNA fragments or even terminal chromosomal segments to other chromosomes of the natural genome.
  • loading
  • [1]
    Albert, H., Dale, E.C., Lee, E. et al. Plant J., 7 (1995),pp. 649-659
    [2]
    Barnett, M.A., Buckle, V.J., Evans, E.P. et al. Telomere directed fragmentation of mammalian chromosomes Nucleic Acids Res., 21 (1993),pp. 27-36
    [3]
    Basu, J., Compitello, G., Stromberg, G. et al. BMC Biotechnol., 5 (2005),p. 21
    [4]
    Bento, M., Gustafson, J.P., Viegas, W. et al. Size matters in Triticeae polyploids: larger genomes have higher remodeling Genome, 54 (2011),pp. 175-183
    [5]
    Birchler, J. Engineered minichromosomes via telomere truncation In Vitro Cell. Dev-An, 46 (2010),pp. S10-S11
    [6]
    Birchler, J., Han, F. Maize centromeres: structure, function, epigenetics Annu. Rev. Genet., 43 (2009),pp. 287-303
    [7]
    Birchler, J., Yu, W., Han, F. Plant engineered minichromosomes and artificial chromosome platforms Cytogenet. Genome Res., 120 (2008),pp. 228-232
    [8]
    Budman, J., Chu, G. Processing of DNA for nonhomologous end-joining by cell-free extract EMBO J., 24 (2005),pp. 849-860
    [9]
    Chawla, R., Ariza-Nieto, M., Wilson, A.J. et al. Transgene expression produced by biolistic-mediated, site-specific gene integration is consistently inherited by the subsequent generations Plant Biotechnol. J., 4 (2006),pp. 209-218
    [10]
    Choi, S., Begum, D., Koshinsky, H. et al. Nucleic Acids Res., 28 (2000),p. e19
    [11]
    deJong, G., Telenius, A.H., Telenius, H. et al. Mammalian artificial chromosome pilot production facility: large-scale isolation of functional satellite DNA-based artificial chromosomes Cytometry, 35 (1999),pp. 129-133
    [12]
    Djukanovic, V., Orczyk, W., Gao, H. et al. Plant Biotechnol. J., 4 (2006),pp. 345-357
    [13]
    Ebersole, T.A., Ross, A., Clark, E. et al. Mammalian artificial chromosome formation from circular alphoid input DNA does not require telomere repeats Hum. Mol. Genet., 9 (2000),pp. 1623-1631
    [14]
    Farr, C.J., Bayne, R., Kipling, D. et al. Generation of a human X-derived minichromosome using telomere-associated chromosome fragmentation EMBO J., 14 (1995),p. 5444
    [15]
    Farr, C.J., Stevanovic, M., Thomson, E.J. et al. Telomere-associated chromosome fragmentation: applications in genome manipulation and analysis Nat. Genet., 2 (1992),pp. 275-282
    [16]
    Hajdukiewicz, P.T., Gilbertson, L., Staub, J.M. Plant J., 27 (2001),pp. 161-170
    [17]
    Han, F.P., Gao, Z., Birchler, J.A. Reactivation of an inactive centromere reveals epigenetic and structural components for centromere specification in maize Plant Cell, 21 (2009),pp. 1929-1939
    [18]
    Harrington, J.J., Van Bokkelen, G., Mays, R.W. et al. Nat. Genet., 15 (1997),pp. 345-355
    [19]
    Heller, R., Brown, K., Burgtorf, C. et al. Mini-chromosomes derived from the human Y chromosome by telomere directed chromosome breakage Proc. Natl. Acad. Sci. U. S. A., 93 (1996),pp. 7125-7130
    [20]
    Henning, K.A., Novotny, E.A., Compton, S.T. et al. Human artificial chromosomes generated by modification of a yeast artificial chromosome containing both human alpha satellite and single-copy DNA sequences Proc. Natl. Acad. Sci. U. S. A., 96 (1999),pp. 592-597
    [21]
    Kapusi, E., Ma, L., Teo, C.H. et al. Telomere-mediated truncation of barley chromosomes Chromosoma, 121 (2012),pp. 181-190
    [22]
    Kato, A., Lamb, J.C., Birchler, J.A. Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize Proc. Natl. Acad. Sci. U. S. A., 101 (2004),pp. 13554-13559
    [23]
    Kerbach, S., Lörz, H., Becker, D. Theor. Appl. Genet., 111 (2005),pp. 1608-1616
    [24]
    Kidwell, K.K., Osborn, T.C.
    [25]
    Lyznik, L.A., Gordon-Kamm, W.J., Tao, Y. Site-specific recombination for genetic engineering in plants Plant Cell Rep., 21 (2003),pp. 925-932
    [26]
    Masumoto, H., Ikeno, M., Nakano, M. et al. Assay of centromere function using a human artificial chromosome Chromosoma, 107 (1998),pp. 406-416
    [27]
    Mcintyre, C.L., Pereira, S., Moran, L.B. et al. Genome, 33 (1990),pp. 635-640
    [28]
    Mills, W., Critcher, R., Lee, C. et al. Generation of an ∼2.4 Mb human X centromere-based minichromosome by targeted telomere-associated chromosome fragmentation in DT40 Hum. Mol. Genet., 8 (1999),pp. 751-761
    [29]
    Murray, A.W., Szostak, J.W. Construction of artificial chromosomes in yeast Nature, 305 (1983),pp. 189-193
    [30]
    Nelson, A.D., Lamb, J.C., Kobrossly, P.S. et al. Plant Cell, 23 (2011),pp. 2263-2272
    [31]
    Nergadze, S.G., Rocchi, M., Azzalin, C.M. et al. Insertion of telomeric repeats at intrachromosomal break sites during primate evolution Genome Res., 14 (2004),pp. 1704-1710
    [32]
    Ow, D.W. Recombinase-directed plant transformation for the post-genomic era Plant Mol. Biol., 48 (2002),pp. 183-200
    [33]
    Rayburn, A.L., Gill, B.S. Plant Mol. Biol. Rep., 4 (1986),pp. 102-109
    [34]
    Rudd, M.K., Mays, R.W., Schwartz, S. et al. Mol. Cell. Biol., 23 (2003),pp. 7689-7697
    [35]
    Saffery, R., Wong, L.H., Irvine, D.V. et al. Construction of neocentromere-based human minichromosomes by telomere-associated chromosomal truncation Proc. Natl. Acad. Sci. U. S. A., 98 (2001),pp. 5705-5710
    [36]
    Srivastava, V., Ow, D.W. Single-copy primary transformants of maize obtained through the co-introduction of a recombinase-expressing construct Plant Mol. Biol., 46 (2001),pp. 561-566
    [37]
    Suzuki, N., Nishii, K., Okazaki, T. et al. Human artificial chromosomes constructed using the bottom-up strategy are stably maintained in mitosis and efficiently transmissible to progeny mice J. Biol. Chem., 281 (2006),pp. 26615-26623
    [38]
    Teo, C.H., Ma, L., Kapusi, E. et al. Plant J., 68 (2011),pp. 28-39
    [39]
    Wang, Y., Cheng, X., Shan, Q. et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew Nat. Biotechnol., 32 (2014),pp. 947-951
    [40]
    Watanabe, K., Breier, U., Hensel, G. et al. Stable gene replacement in barley by targeted double-strand break induction J. Exp. Bot., 67 (2016),pp. 1433-1445
    [41]
    Watson, J.D. Origin of concatemeric T7 DNA Nat. New Biol., 239 (1972),pp. 197-201
    [42]
    Xu, C., Cheng, Z.K., Yu, W. Construction of rice mini-chromosomes by telomere-mediated chromosomal truncation Plant J., 70 (2012),pp. 1070-1079
    [43]
    Yu, W., Han, F., Gao, Z. et al. Construction and behavior of engineered minichromosomes in maize Proc. Natl. Acad. Sci. U. S. A., 104 (2007),pp. 8924-8929
    [44]
    Yu, W., Lamb, J.C., Han, F. et al. Telomere-mediated chromosomal truncation in maize Proc. Natl. Acad. Sci. U. S. A., 103 (2006),pp. 17331-17336
    [45]
    Yu, W., Yau, Y., Birchler, J.A. Plant artificial chromosome technology and its potential application in genetic engineering Plant Biotechnol. J., 14 (2016),pp. 1175-1182
    [46]
    Yuan, J., Guo, X., Hu, J. et al. New Phytol., 206 (2015),pp. 839-851
    [47]
    Zakian, V.A. Structure and function of telomeres Annu. Rev. Genet., 23 (1989),pp. 579-604
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (149) PDF downloads (5) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return