5.9
CiteScore
5.9
Impact Factor
Volume 44 Issue 10
Oct.  2017
Turn off MathJax
Article Contents

Vegfa signaling regulates diverse artery/vein formation in vertebrate vasculatures

doi: 10.1016/j.jgg.2017.07.005
More Information
  • Corresponding author: E-mail address: lifen@scmc.com.cn (Fen Li); E-mail address: tzhong@bio.ecnu.edu.cn (Tao P. Zhong)
  • Received Date: 2017-06-11
  • Accepted Date: 2017-07-17
  • Available Online: 2017-09-21
  • Publish Date: 2017-10-20
  • Vascular endothelial growth factor A (Vegfa) signaling regulates vascular development during embryogenesis and organ formation. However, the signaling mechanisms that govern the formation of various arteries/veins in various tissues are incompletely understood. In this study, we utilized transcription activator-like effector nuclease (TALEN) to generate zebrafish vegfaa mutants. vegfaa embryos are embryonic lethal, and display a complete loss of the dorsal aorta (DA) and expansion of the cardinal vein. Activation of Vegfa signaling expands the arterial cell population at the expense of venous cells during vasculogenesis of the axial vessels in the trunk. Vegfa signaling regulates endothelial cell (EC) proliferation after arterial-venous specification. Vegfa deficiency and overexpression inhibit the formation of tip cell filopodia and interfere with the pathfinding of intersegmental vessels (ISVs). In the head vasculature,vegfaa‒/‒ causes loss of a pair of mesencephalic veins (MsVs) and central arteries (CtAs), both of which usually develop via sprouting angiogenesis. Our results indicate that Vegfa signaling induces the formation of the DA at the expense of the cardinal vein during the trunk vasculogenesis, and that Vegfa is required for the angiogenic formation of MsVs and CtAs in the brain. These findings suggest that Vegfa signaling governs the formation of diverse arteries/veins by distinct cellular mechanisms in vertebrate vasculatures.
  • These authors contributed equally to this work.
  • loading
  • [1]
    Bahary, N., Goishi, K., Stuckenholz, C. et al. Blood, 110 (2007),pp. 3627-3636
    [2]
    Carmeliet, P., Ferreira, V., Breier, G. et al. Nature, 380 (1996),pp. 435-439
    [3]
    Corada, M., Morini, M.F., Dejana, E. Signaling pathways in the specification of arteries and veins Arterioscler. Thromb. Vasc. Biol., 34 (2014),pp. 2372-2377
    [4]
    Covassin, L.D., Villefranc, J.A., Kacergis, M.C. et al. Distinct genetic interactions between multiple Vegf receptors are required for development of different blood vessel types in zebrafish Proc. Natl. Acad. Sci. U. S. A., 103 (2006),pp. 6554-6559
    [5]
    Ferrara, N., Carver-Moore, K., Chen, H. et al. Nature, 380 (1996),pp. 439-442
    [6]
    Fujita, M., Cha, Y.R., Pham, V.N. et al. Assembly and patterning of the vascular network of the vertebrate hindbrain Development, 138 (2011),pp. 1705-1715
    [7]
    Gerhardt, H., Golding, M., Fruttiger, M. et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia J. Cell Biol., 161 (2003),pp. 1163-1177
    [8]
    Habeck, H., Odenthal, J., Walderich, B. et al. Analysis of a zebrafish VEGF receptor mutant reveals specific disruption of angiogenesis Curr. Biol., 12 (2002),pp. 1405-1412
    [9]
    Helker, C.S., Schuermann, A., Pollmann, C. et al. The hormonal peptide Elabela guides angioblasts to the midline during vasculogenesis eLife, 27 (2015),p. 4
    [10]
    Herbert, S.P., Huisken, J., Kim, T.N. et al. Arterial-venous segregation by selective cell sprouting: an alternative mode of blood vessel formation Science, 326 (2009),pp. 294-298
    [11]
    Ho, R.K., Kane, D.A. Nature, 48 (1990),pp. 728-730
    [12]
    Isogai, S., Horiguchi, M., Weinstein, B.M. The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development Dev. Biol., 230 (2001),pp. 278-301
    [13]
    Jin, S.W., Beis, D., Mitchell, T. et al. Cellular and molecular analyses of vascular tube and lumen formation in zebrafish Development, 132 (2005),pp. 5199-5209
    [14]
    Kohli, V., Schumacher, J.A., Desai, S.P. et al. Arterial and venous progenitors of the major axial vessels originate at distinct locations Dev. Cell, 25 (2013),pp. 196-206
    [15]
    Larson, J.D., Wadman, S.A., Chen, E. et al. Expression of VE-cadherin in zebrafish embryos: a new tool to evaluate vascular development Dev. Dyn., 231 (2004),pp. 204-213
    [16]
    Lawson, N.D., Vogel, A.M., Weinstein, B.M. Dev. Cell, 3 (2002),pp. 127-136
    [17]
    Lawson, N.D., Weinstein, B.M. Arteries and veins: making a difference with zebrafish Nat. Rev. Genet., 3 (2002),pp. 674-682
    [18]
    Lee, S., Chen, T.T., Barber, C.L. et al. Autocrine VEGF signaling is required for vascular homeostasis Cell, 130 (2007),pp. 691-703
    [19]
    Palencia-Desai, S., Rost, M.S., Schumacher, J.A. et al. Myocardium and BMP signaling are required for endocardial differentiation Development, 142 (2015),pp. 2304-2315
    [20]
    Parker, L., Stainier, D.Y. Cell-autonomous and non-autonomous requirements for the zebrafish gene cloche in hematopoiesis Development, 126 (1999),pp. 2643-2651
    [21]
    Proulx, K., Lu, A., Sumanas, S. Cranial vasculature in zebrafish forms by angioblast cluster-derived angiogenesis Dev. Biol., 348 (2010),pp. 34-46
    [22]
    Roman, B.L., Pham, V.N., Lawson, N.D. et al. Disruption of acvrl1 increases endothelial cell number in zebrafish cranial vessels Development, 129 (2002),pp. 3009-3019
    [23]
    Rossi, A., Gauvrit, S., Marass, M. et al. Regulation of Vegf signaling by natural and synthetic ligands Blood, 128 (2016),pp. 2359-2366
    [24]
    Sehnert, A.J., Huq, A., Weinstein, B.M. et al. Cardiac troponin T is essential in sarcomere assembly and cardiac contractility Nat. Genet., 31 (2002),pp. 106-110
    [25]
    Thisse, C., Thisse, B. Nat. Protoc., 3 (2008),pp. 59-69
    [26]
    Ulrich, F., Ma, L., Baker, R.G. et al. Neurovascular development in the embryonic zebrafish hindbrain Dev. Biol., 357 (2011),pp. 134-151
    [27]
    Westerfield, M.
    [28]
    Williams, C., Kim, S.H., Ni, T.T. et al. Hedgehog signaling induces arterial endothelial cell formation by repressing venous cell fate Dev. Biol., 341 (2010),pp. 196-204
    [29]
    Zhong, T.P. Zebrafish genetics and formation of embryonic vasculature Curr. Top. Dev. Biol., 71 (2005),pp. 53-81
    [30]
    Zhong, T.P., Childs, S., Leu, J.P. et al. Gridlock signaling pathway fashions the first embryonic artery Nature, 414 (2001),pp. 216-220
    [31]
    Zhong, T.P., Rosenberg, M., Mohideen, M.A. et al. Science, 287 (2000),pp. 1820-1824
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (109) PDF downloads (3) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return