[1] |
Bahary, N., Goishi, K., Stuckenholz, C. et al. Blood, 110 (2007),pp. 3627-3636
|
[2] |
Carmeliet, P., Ferreira, V., Breier, G. et al. Nature, 380 (1996),pp. 435-439
|
[3] |
Corada, M., Morini, M.F., Dejana, E. Signaling pathways in the specification of arteries and veins Arterioscler. Thromb. Vasc. Biol., 34 (2014),pp. 2372-2377
|
[4] |
Covassin, L.D., Villefranc, J.A., Kacergis, M.C. et al. Distinct genetic interactions between multiple Vegf receptors are required for development of different blood vessel types in zebrafish Proc. Natl. Acad. Sci. U. S. A., 103 (2006),pp. 6554-6559
|
[5] |
Ferrara, N., Carver-Moore, K., Chen, H. et al. Nature, 380 (1996),pp. 439-442
|
[6] |
Fujita, M., Cha, Y.R., Pham, V.N. et al. Assembly and patterning of the vascular network of the vertebrate hindbrain Development, 138 (2011),pp. 1705-1715
|
[7] |
Gerhardt, H., Golding, M., Fruttiger, M. et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia J. Cell Biol., 161 (2003),pp. 1163-1177
|
[8] |
Habeck, H., Odenthal, J., Walderich, B. et al. Analysis of a zebrafish VEGF receptor mutant reveals specific disruption of angiogenesis Curr. Biol., 12 (2002),pp. 1405-1412
|
[9] |
Helker, C.S., Schuermann, A., Pollmann, C. et al. The hormonal peptide Elabela guides angioblasts to the midline during vasculogenesis eLife, 27 (2015),p. 4
|
[10] |
Herbert, S.P., Huisken, J., Kim, T.N. et al. Arterial-venous segregation by selective cell sprouting: an alternative mode of blood vessel formation Science, 326 (2009),pp. 294-298
|
[11] |
Ho, R.K., Kane, D.A. Nature, 48 (1990),pp. 728-730
|
[12] |
Isogai, S., Horiguchi, M., Weinstein, B.M. The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development Dev. Biol., 230 (2001),pp. 278-301
|
[13] |
Jin, S.W., Beis, D., Mitchell, T. et al. Cellular and molecular analyses of vascular tube and lumen formation in zebrafish Development, 132 (2005),pp. 5199-5209
|
[14] |
Kohli, V., Schumacher, J.A., Desai, S.P. et al. Arterial and venous progenitors of the major axial vessels originate at distinct locations Dev. Cell, 25 (2013),pp. 196-206
|
[15] |
Larson, J.D., Wadman, S.A., Chen, E. et al. Expression of VE-cadherin in zebrafish embryos: a new tool to evaluate vascular development Dev. Dyn., 231 (2004),pp. 204-213
|
[16] |
Lawson, N.D., Vogel, A.M., Weinstein, B.M. Dev. Cell, 3 (2002),pp. 127-136
|
[17] |
Lawson, N.D., Weinstein, B.M. Arteries and veins: making a difference with zebrafish Nat. Rev. Genet., 3 (2002),pp. 674-682
|
[18] |
Lee, S., Chen, T.T., Barber, C.L. et al. Autocrine VEGF signaling is required for vascular homeostasis Cell, 130 (2007),pp. 691-703
|
[19] |
Palencia-Desai, S., Rost, M.S., Schumacher, J.A. et al. Myocardium and BMP signaling are required for endocardial differentiation Development, 142 (2015),pp. 2304-2315
|
[20] |
Parker, L., Stainier, D.Y. Cell-autonomous and non-autonomous requirements for the zebrafish gene cloche in hematopoiesis Development, 126 (1999),pp. 2643-2651
|
[21] |
Proulx, K., Lu, A., Sumanas, S. Cranial vasculature in zebrafish forms by angioblast cluster-derived angiogenesis Dev. Biol., 348 (2010),pp. 34-46
|
[22] |
Roman, B.L., Pham, V.N., Lawson, N.D. et al. Disruption of acvrl1 increases endothelial cell number in zebrafish cranial vessels Development, 129 (2002),pp. 3009-3019
|
[23] |
Rossi, A., Gauvrit, S., Marass, M. et al. Regulation of Vegf signaling by natural and synthetic ligands Blood, 128 (2016),pp. 2359-2366
|
[24] |
Sehnert, A.J., Huq, A., Weinstein, B.M. et al. Cardiac troponin T is essential in sarcomere assembly and cardiac contractility Nat. Genet., 31 (2002),pp. 106-110
|
[25] |
Thisse, C., Thisse, B. Nat. Protoc., 3 (2008),pp. 59-69
|
[26] |
Ulrich, F., Ma, L., Baker, R.G. et al. Neurovascular development in the embryonic zebrafish hindbrain Dev. Biol., 357 (2011),pp. 134-151
|
[27] |
Westerfield, M.
|
[28] |
Williams, C., Kim, S.H., Ni, T.T. et al. Hedgehog signaling induces arterial endothelial cell formation by repressing venous cell fate Dev. Biol., 341 (2010),pp. 196-204
|
[29] |
Zhong, T.P. Zebrafish genetics and formation of embryonic vasculature Curr. Top. Dev. Biol., 71 (2005),pp. 53-81
|
[30] |
Zhong, T.P., Childs, S., Leu, J.P. et al. Gridlock signaling pathway fashions the first embryonic artery Nature, 414 (2001),pp. 216-220
|
[31] |
Zhong, T.P., Rosenberg, M., Mohideen, M.A. et al. Science, 287 (2000),pp. 1820-1824
|