5.9
CiteScore
5.9
Impact Factor
Volume 44 Issue 8
Aug.  2017
Turn off MathJax
Article Contents

Cold-induced retrotransposition of fish LINEs

doi: 10.1016/j.jgg.2017.07.002
More Information
  • Corresponding author: E-mail address: lbchen@shou.edu.cn (Liangbiao Chen)
  • Received Date: 2017-04-11
  • Accepted Date: 2017-07-21
  • Rev Recd Date: 2017-07-18
  • Available Online: 2017-07-24
  • Publish Date: 2017-08-20
  • Classes of retrotransposons constitute a large portion of metazoan genome. There have been cases reported that genomic abundance of retrotransposons is correlated with the severity of low environmental temperatures. However, the molecular mechanisms underlying such correlation are unknown. We show here by cell transfection assays that retrotransposition (RTP) of a long interspersed nuclear element (LINE) from an Antarctic notothenioid fishDissostichus mawsoni (dmL1) could be activated by low temperature exposure, causing increased dmL1 copies in the host cell genome. The cold-induced dmL1 propagation was demonstrated to be mediated by the mitogen-activated protein kinases (MAPK)/p38 signaling pathway, which is activated by accumulation of reactive oxygen species (ROS) in cold-stressed conditions. Surprisingly, dmL1 transfected cells showed an increase in the number of viable cells after prolonged cold exposures than non-transfected cells. Features of cold inducibility of dmL1 were recapitulated in LINEs of zebrafish origin both in cultured cell lines and tissues, suggesting existence of a common cold-induced LINE amplification in fishes. The findings reveal an important function of LINEs in temperature adaptation and provid insights into the MAPK/p38 stress responsive pathway that shapes LINE composition in fishes facing cold stresses.
  • loading
  • [1]
    Aizawa, Y., Xiang, Q., Lambowitz, A.M. et al. The pathway for DNA recognition and RNA integration by a group II intron retrotransposon Mol. Cell, 11 (2003),pp. 795-805
    [2]
    Alves, G., Kawamura, M.T., Nascimento, P. et al. DNA release by line-1 (L1) retrotransposon. could it be possible? Ann. N. Y. Acad. Sci., 906 (2000),pp. 129-133
    [3]
    Beck, C.R., Garcia-Perez, J.L., Badge, R.M. et al. LINE-1 elements in structural variation and disease Annu. Rev. Genom. Hum. G., 12 (2011),pp. 187-215
    [4]
    Benhar, M., Engelberg, D., Levitzki, A. ROS, stress-activated kinases and stress signaling in cancer EMBO Rep., 3 (2002),pp. 420-425
    [5]
    Burch, J., Davis, D.L., Haas, N.B. Chicken repeat 1 elements contain a pol-like open reading frame and belong to the non-long terminal repeat class of retrotransposons Proc. Natl. Acad. Sci. U. S. A., 90 (1993),pp. 8199-8203
    [6]
    Cargnello, M., Roux, P.P. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases Microbiol. Mol. Biol. Rev., 75 (2011),pp. 50-83
    [7]
    Chen, Z., Cheng, C.H., Zhang, J. et al. Transcriptomic and genomic evolution under constant cold in Antarctic notothenioid fish Proc. Natl. Acad. Sci. U. S. A., 105 (2008),pp. 12944-12949
    [8]
    Chouchani, E.T., Kazak, L., Jedrychowski, M.P. et al. Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1 Nature, 532 (2016),pp. 112-116
    [9]
    Cook, P.R., Jones, C.E., Furano, A.V. Phosphorylation of ORF1p is required for L1 retrotransposition Proc. Natl. Acad. Sci. U. S. A., 112 (2015),pp. 4298-4303
    [10]
    Coufal, N.G., Garcia-Perez, J.L., Peng, G.E. et al. L1 retrotransposition in human neural progenitor cells Nature, 460 (2009),pp. 1127-1131
    [11]
    Del Re, B., Marcantonio, P., Capri, M. et al. Exp. Cell Res., 316 (2010),pp. 3358-3367
    [12]
    Del Re, B., Marcantonio, P., Gavoci, E. et al. Assessing LINE-1 retrotransposition activity in neuroblastoma cells exposed to extremely low-frequency pulsed magnetic fields Mutat. Res., 749 (2012),pp. 76-81
    [13]
    Denli, A.M., Narvaiza, I., Kerman, B.E. et al. Primate-specific ORF0 contributes to retrotransposon-mediated diversity Cell, 163 (2015),pp. 583-593
    [14]
    Dolado, I., Swat, A., Ajenjo, N. et al. p38α MAP kinase as a sensor of reactive oxygen species in tumorigenesis Cancer Cell, 11 (2007),pp. 191-205
    [15]
    Edgar, R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput Nucleic Acids Res., 32 (2004),pp. 1792-1797
    [16]
    Eickbush, T., Malik, H.
    [17]
    El-Sawy, M., Kale, S.P., Dugan, C. et al. Nickel stimulates L1 retrotransposition by a post-transcriptional mechanism J. Mol. Biol., 354 (2005),pp. 246-257
    [18]
    Farkash, E.A., Kao, G.D., Horman, S.R. et al. Gamma radiation increases endonuclease-dependent L1 retrotransposition in a cultured cell assay Nucleic Acids Res., 34 (2006),pp. 1196-1204
    [19]
    Furano, A.V., Duvernell, D.D., Boissinot, S. L1 (LINE-1) retrotransposon diversity differs dramatically between mammals and fish Trends Genet., 20 (2004),pp. 9-14
    [20]
    Giorgi, G., Marcantonio, P., Del Re, B. LINE-1 retrotransposition in human neuroblastoma cells is affected by oxidative stress Cell Tissue Res., 346 (2011),pp. 383-391
    [21]
    Goodier, J.L. Restricting retrotransposons: a review Mob. DNA, 7 (2016),p. 16
    [22]
    Goodier, J.L., Retrotransposons revisited: the restraint and rehabilitation of parasites Cell, 135 (2008),pp. 23-35
    [23]
    Gouy, M., Guindon, S., Gascuel, O. Seaview version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building Mol. Biol. Evol., 27 (2010),pp. 221-224
    [24]
    Hawkins, J.S., Kim, H., Nason, J.D. et al. Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium Genome Res., 16 (2006),pp. 1252-1261
    [25]
    Jeffery, N. The first genome size estimates for six species of krill (Malacostraca, Euphausiidae): large genomes at the north and south poles Polar Biol., 35 (2012),pp. 959-962
    [26]
    Johnston, I.A., Dunn, J. Temperature acclimation and metabolism in ectotherms with particular reference to teleost fish Symp. Soc. Exp. Biol., 41 (1987),pp. 67-93
    [27]
    Kale, S.P., Moore, L., Deininger, P.L. et al. Heavy metals stimulate human LINE-1 retrotransposition Inter. J. Env. Res. pub. Heal, 2 (2005),pp. 14-23
    [28]
    Kano, H., Godoy, I., Courtney, C. et al. L1 retrotransposition occurs mainly in embryogenesis and creates somatic mosaicism Genes Dev., 23 (2009),pp. 1303-1312
    [29]
    Khan, H., Smit, A., Boissinot, S. Molecular evolution and tempo of amplification of human LINE-1 retrotransposons since the origin of primates Genome Res., 16 (2006),pp. 78-87
    [30]
    Kidwell, M.G., Lisch, D.R. Transposable elements and host genome evolution Trends Ecol. Evol., 15 (2000),pp. 95-99
    [31]
    Kinoshita, S.M., Taguchi, S. NF-IL6 (C/EBPβ) induces HIV-1 replication by inhibiting cytidine deaminase APOBEC3G Proc. Natl. Acad. Sci. U. S. A., 105 (2008),pp. 15022-15027
    [32]
    Lander, E.S., Linton, L.M., Birren, B. et al. Initial sequencing and analysis of the human genome Nature, 409 (2001),pp. 860-921
    [33]
    Lin, Y.F., Waldman, A.S. Capture of DNA sequences at double-strand breaks in mammalian chromosomes Genetics, 158 (2001),pp. 1665-1674
    [34]
    Louis, K.S., Siegel, A.C. Cell viability analysis using trypan blue: manual and automated methods Methods Mol. Biol., 740 (2011),pp. 7-12
    [35]
    Martin, S.L., Cruceanu, M., Branciforte, D. et al. LINE-1 retrotransposition requires the nucleic acid chaperone activity of the ORF1 protein J. Mol. Biol., 348 (2005),pp. 549-561
    [36]
    Matsuki, H., Takahashi, M., Higuchi, M. et al. Both G3BP1 and G3BP2 contribute to stress granule formation Genes Cells, 18 (2013),pp. 135-146
    [37]
    McCubrey, J.A., LaHair, M.M., Franklin, R.A. Reactive oxygen species-induced activation of the MAP kinase signaling pathways Antioxid. Redox Sign, 8 (2006),pp. 1775-1789
    [38]
    Morrish, T.A., Gilbert, N., Myers, J.S. et al. DNA repair mediated by endonuclease-independent LINE-1 retrotransposition Nat. Genet., 31 (2002),pp. 159-165
    [39]
    Okudaira, N., Iijima, K., Koyama, T. et al. Induction of long interspersed nucleotide element-1 (L1) retrotransposition by 6-formylindolo[3,2-b]carbazole (FICZ), a tryptophan photoproduct Proc. Natl. Acad. Sci. U. S. A., 107 (2010),pp. 18487-18492
    [40]
    Okudaira, N., Okamura, T., Tamura, M. et al. Long interspersed element-1 is differentially regulated by food-borne carcinogens via the aryl hydrocarbon receptor Oncogene, 32 (2013),pp. 4903-4912
    [41]
    Okudaira, N., Ishizaka, Y., Nishio, H. Retrotransposition of long interspersed element 1 induced by methamphetamine or cocaine J. Biol. Chem., 289 (2014),pp. 25476-25485
    [42]
    Ospina-Alvarez, N., Piferrer, F. Temperature-dependent sex determination in fish revisited: prevalence, a single sex ratio response pattern, and possible effects of climate change PLoS One, 3 (2008),p. e2837
    [43]
    Ostertag, E.M., Biology of mammalian L1 retrotransposons Annu. Rev. Genet., 35 (2001),pp. 501-538
    [44]
    Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR Nucleic Acids Res., 29 (2001),p. e45
    [45]
    Poulter, R., Butler, M., Ormandy, J. A LINE element from the pufferfish (fugu) Fugu rubripes which shows similarity to the CR1 family of non-LTR retrotransposons Gene, 227 (1999),pp. 169-179
    [46]
    Rauen, U., Polzar, B., Stephan, H. et al. Cold-induced apoptosis in cultured hepatocytes and liver endothelial cells: mediation by reactive oxygen species FASEB J., 13 (1999),pp. 155-168
    [47]
    Rees, D.J., Dufresne, F., Glemet, H. et al. Amphipod genome sizes: first estimates for Arctic species reveal genomic giants Genome, 50 (2007),pp. 151-158
    [48]
    Rees, D.J., Belzile, C., Glémet, H. et al. Large genomes among caridean shrimp Genome, 51 (2008),pp. 159-163
    [49]
    Rosser, J.M., An, W. L1 expression and regulation in humans and rodents Front. Biosci., 4 (2012),pp. 2203-2225
    [50]
    Servomaa, K., Rytömaa, T. UV light and ionizing radiations cause programmed death of rat chloroleukaemia cells by inducing retropositions of a mobile DNA element (L1Rn) Int. J. Radiat. Biol., 57 (1990),pp. 331-343
    [51]
    Shedlock, A.M. Phylogenomic investigation of CR1 LINE diversity in reptiles Syst. Biol., 55 (2006),pp. 902-911
    [52]
    Song, Y.S., Lee, B.Y., Hwang, E.S. Dinstinct ROS and biochemical profiles in cells undergoing DNA damage-induced senescence and apoptosis Mech. Ageing Dev., 126 (2005),pp. 580-590
    [53]
    Stribinskis, V., Ramos, K.S. Activation of human long interspersed nuclear element 1 retrotransposition by benzo (a) pyrene, an ubiquitous environmental carcinogen Cancer Res., 66 (2006),pp. 2616-2620
    [54]
    Sugano, T., Kajikawa, M., Okada, N. Isolation and characterization of retrotransposition-competent LINEs from zebrafish Gene, 365 (2006),pp. 74-82
    [55]
    Suzuki, J., Yamaguchi, K., Kajikawa, M. et al. Genetic evidence that the non-homologous end-joining repair pathway is involved in LINE retrotransposition PLoS Genet., 5 (2009),p. e1000461
    [56]
    Tamura, K., Stecher, G., Peterson, D. et al. MEGA6: molecular evolutionary genetics analysis version 6.0 Mol. Biol. Evol., 30 (2013),pp. 2725-2729
    [57]
    Tanaka, A., Nakatani, Y., Hamada, N. et al. Ionising irradiation alters the dynamics of human long interspersed nuclear elements 1 (LINE1) retrotransposon Mutagenesis, 27 (2012),pp. 599-607
    [58]
    Teng, S.C., Kim, B., Gabriel, A. Retrotransposon reverse-transcriptase-mediated repair of chromosomal breaks Nature, 383 (1996),pp. 641-644
    [59]
    Ubersax, J.A., Mechanisms of specificity in protein phosphorylation Nat. Rev. Mol. Cell Biol., 8 (2007),pp. 530-541
    [60]
    van Buer, J., Cvetkovic, J., Baier, M. BMC Plant Biol., 16 (2016),p. 163
    [61]
    Vieira, C., Aubry, P., Lepetit, D. et al. Proc. Biol. Sci., 265 (1998),pp. 1161-1165
    [62]
    Volff, J.-N., Brosius, J. Modern genomes with retro-look: retrotransposed elements, retroposition and the origin of new genes Gene Protein Evol., 3 (2007),pp. 175-190
    [63]
    Whelan, J.A., Russell, N.B., Whelan, M.A. A method for the absolute quantification of cDNA using real-time PCR J. Immuno. Methods, 278 (2003),pp. 261-269
    [64]
    Zedek, F., Smerda, J., Smarda, P. et al. Correlated evolution of LTR retrotransposons and genome size in the genus Eleocharis BMC Plant Biol., 10 (2010),p. 265
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (96) PDF downloads (2) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return