5.9
CiteScore
5.9
Impact Factor
Volume 44 Issue 6
Jun.  2017
Turn off MathJax
Article Contents

Increased food intake after starvation enhances sleep in Drosophila melanogaster

doi: 10.1016/j.jgg.2017.05.006
More Information
  • Corresponding author: E-mail address: yongzhang@unr.edu (Yong Zhang)
  • Received Date: 2016-12-29
  • Accepted Date: 2017-05-16
  • Rev Recd Date: 2017-04-21
  • Available Online: 2017-06-13
  • Publish Date: 2017-06-20
  • Feeding and sleep are highly conserved, interconnected behaviors essential for survival. Starvation has been shown to potently suppress sleep across species; however, whether satiety promotes sleep is still unclear. Here we use the fruit fly, Drosophila melanogaster, as a model organism to address the interaction between feeding and sleep. We first monitored the sleep of flies that had been starved for 24 h and found that sleep amount increased in the first 4 h after flies were given food. Increased sleep after starvation was due to an increase in sleep bout number and average sleep bout length. Mutants of translin or adipokinetic hormone, which fail to suppress sleep during starvation, still exhibited a sleep increase after starvation, suggesting that sleep increase after starvation is not a consequence of sleep loss during starvation. We also found that feeding activity and food consumption were higher in the first 10–30 min after starvation. Restricting food consumption in starved flies to 30 min was sufficient to increase sleep for 1 h. Although flies ingested a comparable amount of food at differing sucrose concentrations, sleep increase after starvation on a lower sucrose concentration was undetectable. Taken together, our results suggest that increased food intake after starvation enhances sleep and reveals a novel relationship between feeding and sleep.
  • loading
  • [1]
    Antin, J., Gibbs, J., Holt, J. et al. Cholecystokinin elicits the complete behavioral sequence of satiety in rats J. Comp. Physiol. Psychol., 89 (1975),pp. 784-790
    [2]
    Beccuti, G., Pannain, S. Sleep and obesity Curr. Opin. Clin. Nutr. Metab. Care, 14 (2011),pp. 402-412
    [3]
    Borbély, A.A. A two-process model of sleep regulation Hum. Neurobiol., 1 (1982),pp. 195-204
    [4]
    Carabotti, M., Scirocco, A., Maselli, M.A. et al. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems Ann. Gastroenterol., 28 (2015),pp. 203-209
    [5]
    Danguir, J. Cafeteria diet promotes sleep in rats Appetite, 8 (1987),pp. 49-53
    [6]
    Danguir, J., Nicolaidis, S. Dependence of sleep on nutrients availability Physiol. Behav., 22 (1979),pp. 735-740
    [7]
    Davis, J.D., Levine, M.W. A model for the control of ingestion Psychol. Rev., 84 (1977),pp. 379-412
    [8]
    Galland, L. The gut microbiome and the brain J. Med. Food, 17 (2014),pp. 1261-1272
    [9]
    Gilestro, G.F., Cirelli, C. Bioinformatics, 25 (2009),pp. 1466-1467
    [10]
    Hendricks, J.C., Finn, S.M., Panckeri, K.A. et al. Neuron, 25 (2000),pp. 129-138
    [11]
    Itskov, P.M., Moreira, J.M., Vinnik, E. et al. Nat. Commun., 5 (2014),p. 4560
    [12]
    Ja, W.W., Carvalho, G.B., Mak, E.M. et al. Proc. Natl. Acad. Sci. U. S. A., 104 (2007),pp. 8253-8256
    [13]
    Keene, A.C., Duboué, E.R., McDonald, D.M. et al. Curr. Biol., 20 (2010),pp. 1209-1215
    [14]
    Knutson, K.L., Spiegel, K., Penev, P. et al. The metabolic consequences of sleep deprivation Sleep. Med. Rev., 11 (2007),pp. 163-178
    [15]
    Lee, G., Park, J.H. Genetics, 167 (2004),pp. 311-323
    [16]
    MacFadyen, U.M., Oswald, I., Lewis, S.A.J. Starvation and human slow-wave sleep J. Appl. Physiol., 35 (1973),pp. 391-394
    [17]
    Masek, P., Reynolds, L.A., Bollinger, W.L. et al. J. Exp. Biol., 217 (2014),pp. 3122-3132
    [18]
    Murakami, K., Yurgel, M.E., Stahl, B.A. et al. Translin is required for metabolic regulation of sleep Curr. Biol., 26 (2016),pp. 972-980
    [19]
    Murphy, K.R., Deshpande, S.A., Yurgel, M.E. et al. eLife, 5 (2016),p. e19334
    [20]
    Pfeiffenberger, C., Lear, B.C., Keegan, K.P. et al. Cold Spring Harb. Protoc., 2010 (2010)
    [21]
    Romero-Corral, A., Caples, S.M., Lopez-Jimenez, F. et al. Interactions between obesity and obstructive sleep apnea Chest, 137 (2010),pp. 711-719
    [22]
    Sharma, S., Kavuru, M. Sleep and metabolism: an overview Int. J. Endocrinol., 2010 (2010),pp. 1-12
    [23]
    Shaw, P.J., Cirelli, C., Greenspan, R.J. et al. Science, 287 (2000),pp. 1834-1837
    [24]
    Shemyakin, A., Kapas, L. L-364,718, a cholecystokinin-A receptor antagonist, suppresses feeding-induced sleep in rats Am. J. Physiol. Regul. Integr. Comp. Physiol., 280 (2001),pp. 1420-1426
    [25]
    Sehgal, A., Mignot, E. Genetics of sleep and sleep disorders Cell, 146 (2011),pp. 194-207
    [26]
    Stahl, M.L., Orr, W.C., Bollinger, C. Postprandial sleepiness: objective documentation via polysomnography Sleep, 6 (1983),pp. 29-35
    [27]
    Thimgan, M.S., Suzuki, Y., Seugnet, L. et al. The perilipin homologue, lipid storage droplet 2, regulates sleep homeostasis and prevents learning impairments following sleep loss PLoS Biol., 8 (2010),p. e1000466
    [28]
    Turnbaugh, P.J., Gordon, J.I. The core gut microbiome, energy balance and obesity J. Physiol., 587 (2009),pp. 4153-4158
    [29]
    Winbush, A., Gruner, M., Hennig, G.W. et al. J. Neurosci. Methods, 249 (2015),pp. 66-74
    [30]
    Xu, K., Zheng, X., Sehgal, A. Cell Metab., 8 (2008),pp. 289-300
    [31]
    Yapici, N., Cohn, R., Schusterreiter, C. et al. A taste circuit that regulates ingestion by integrating food and hunger signals Cell, 165 (2016),pp. 715-729
    [32]
    You, Y.J., Kim, J., Raizen, D.M. et al. Cell Metab., 7 (2008),pp. 249-257
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (86) PDF downloads (1) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return