5.9
CiteScore
5.9
Impact Factor
Volume 44 Issue 5
May  2017
Turn off MathJax
Article Contents

SysFinder: A customized platform for search, comparison and assisted design of appropriate animal models based on systematic similarity

doi: 10.1016/j.jgg.2017.05.001
More Information
  • Corresponding author: E-mail address: echenum@med.umich.edu (Y. Eugene Chen); E-mail address: sunhong@scbit.org (Hong Sun); E-mail address: yxli@sibs.ac.cn (Yixue Li)
  • Received Date: 2016-12-06
  • Accepted Date: 2017-05-03
  • Rev Recd Date: 2017-05-02
  • Available Online: 2017-05-04
  • Publish Date: 2017-05-20
  • Animal models are increasingly gaining values by cross-comparisons of response or resistance to clinical agents used for patients. However, many disease mechanisms and drug effects generated from animal models are not transferable to human. To address these issues, we developed SysFinder (http://lifecenter.sgst.cn/SysFinder), a platform for scientists to find appropriate animal models for translational research. SysFinder offers a “topic-centered” approach for systematic comparisons of human genes, whose functions are involved in a specific scientific topic, to the corresponding homologous genes of animal models. Scientific topic can be a certain disease, drug, gene function or biological pathway. SysFinder calculates multi-level similarity indexes to evaluate the similarities between human and animal models in specified scientific topics. Meanwhile, SysFinder offers species-specific information to investigate the differences in molecular mechanisms between humans and animal models. Furthermore, SysFinder provides a user-friendly platform for determination of short guide RNAs (sgRNAs) and homology arms to design a new animal model. Case studies illustrate the ability of SysFinder in helping experimental scientists. SysFinder is a useful platform for experimental scientists to carry out their research in the human molecular mechanisms.
  • These authors contributed equally to this work.
  • loading
  • [1]
    Ashburner, M., Ball, C.A., Blake, J.A. et al. Gene Ontology: tool for the unification of biology Nat. Genet., 25 (2000),p. 25
    [2]
    Bedell, M.A., Largaespada, D.A., Jenkins, N.A. et al. Mouse models of human disease. Part II: recent progress and future directions Genes Dev., 11 (1997),pp. 11-43
    [3]
    Belizário, J.E. Immunodeficient mouse models: an overview Open Immunol. J., 2 (2009),pp. 79-85
    [4]
    Bieche, I., Girault, I., Urbain, E. et al. Relationship between intratumoral expression of genes coding for xenobiotic-metabolizing enzymes and benefit from adjuvant tamoxifen in estrogen receptor alpha-positive postmenopausal breast carcinoma Breast Cancer Res., 6 (2004),pp. R252-R263
    [5]
    Bishop, A.J., Schiestl, R.H. Role of homologous recombination in carcinogenesis Exp. Mol. Pathol., 74 (2003),pp. 94-105
    [6]
    Burge, C., Karlin, S. Prediction of complete gene structures in human genomic DNA J. Mol. Biol., 268 (1997),pp. 78-94
    [7]
    Chen, Z.-Y., Jing, D., Bath, K.G. et al. Science, 314 (2006),pp. 140-143
    [8]
    Cheon, D.-J., Orsulic, S. Mouse models of cancer Annu. Rev. Pathol. Mech., 6 (2011),pp. 95-119
    [9]
    Choi, C., Kusewitt, D. Comparison of tyrosinase-related protein-2, S-100, and Melan A immunoreactivity in canine amelanotic melanomas Vet. Pathol., 40 (2003),pp. 713-718
    [10]
    Choi, Y., Sims, G.E., Murphy, S. et al. Predicting the functional effect of amino acid substitutions and indels PLoS One, 7 (2012),p. e46688
    [11]
    Cortes, S., Chambers, S., Jerónimo, A. et al. Diabetes mellitus complicating systemic lupus erythematosus–analysis of the UCL lupus cohort and review of the literature Lupus, 17 (2008),pp. 977-980
    [12]
    Csardi, G., Nepusz, T. The igraph software package for complex network research Intern. Complex Syst., 1695 (2006),pp. 1-9
    [13]
    Davis, A.J., Chen, D.J. DNA double strand break repair via non-homologous end-joining Transl. Cancer Res., 2 (2013),p. 130
    [14]
    Davisson, M. The Jackson Laboratory mouse mutant resource Fac. Res., 1990–1999 (1990),p. 22
    [15]
    Eppig, J.T., Blake, J.A., Bult, C.J. et al. Mouse genome informatics (MGI) resources for pathology and toxicology Toxicol. Pathol., 35 (2007),pp. 456-457
    [16]
    Eshleman, J.R., Markowitz, S.D. Mismatch repair defects in human carcinogenesis Hum. Mol. Genet., 5 (1996),pp. 1489-1494
    [17]
    Fletcher, J.I., Haber, M., Henderson, M.J. et al. ABC transporters in cancer: more than just drug efflux pumps Nat. Rev. Cancer, 10 (2010),pp. 147-156
    [18]
    Flicek, P., Amode, M.R., Barrell, D. et al. Ensembl 2012 Nucleic Acids Res., 40 (2012),pp. D84-D90
    [19]
    Gibbons, D.L., Spencer, J. Mouse and human intestinal immunity: same ballpark, different players; different rules, same score Mucosal Immunol., 4 (2011),pp. 148-157
    [20]
    Gillet, J.-P., Schneider, J., Bertholet, V. et al. Microarray expression profiling of ABC transporters in human breast cancer Cancer Genom. Proteom., 3 (2006),pp. 97-106
    [21]
    Gottlieb, G., Lickliter, R. The various roles of animal models in understanding human development Soc. Dev., 13 (2004),pp. 311-325
    [22]
    Grubb, S.C., Bult, C.J., Bogue, M.A. Mouse phenome database Nucleic Acids Res., 42 (2014),pp. D825-D834
    [23]
    Guyton, A.
    [24]
    Hamosh, A., Scott, A.F., Amberger, J.S. et al. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders Nucleic Acids Res., 33 (2005),pp. D514-D517
    [25]
    Haring, S.J., Humphreys, T.D., Wold, M.S. A naturally occurring human RPA subunit homolog does not support DNA replication or cell-cycle progression Nucleic Acids Res., 38 (2010),pp. 846-858
    [26]
    Haskell, B.D., Flurkey, K., Duffy, T.M. et al. The diabetes-prone NZO/HlLt strain. I. Immunophenotypic comparison to the related NZB/BlNJ and NZW/LacJ strains Lab. Invest., 82 (2002),pp. 833-842
    [27]
    Hlavata, I., Mohelnikova-Duchonova, B., Vaclavikova, R. et al. The role of ABC transporters in progression and clinical outcome of colorectal cancer Mutagenesis, 27 (2012),pp. 187-196
    [28]
    Honorat, M., Mesnier, A., Vendrell, J. et al. Int. J. Breast Cancer, 2011 (2011),p. 807380
    [29]
    Honorat, M., Mesnier, A., Vendrell, J. et al. Endocr. Relat. Cancer, 15 (2008),pp. 125-138
    [30]
    Johnson, D.H. Chemotherapy for metastatic non-small-cell lung cancer—can that dog hunt? J. Natl. Cancer I, 85 (1993),pp. 766-767
    [31]
    Kanehisa, M., Goto, S., Kawashima, S. et al. The KEGG resource for deciphering the genome Nucleic Acids Res., 32 (2004),pp. D277-D280
    [32]
    Khanna, C., Lindblad-Toh, K., Vail, D. et al. The dog as a cancer model Nat. Biotechnol., 24 (2006),pp. 1065-1066
    [33]
    Kuhn, M., Campillos, M., Letunic, I. et al. A side effect resource to capture phenotypic effects of drugs Mol. Syst. Biol., 6 (2010),p. 343
    [34]
    Landrum, M.J., Lee, J.M., Benson, M. et al. ClinVar: public archive of interpretations of clinically relevant variants Nucleic Acids Res., 44 (2016),pp. D862-D868
    [35]
    Larkin, M.A., Blackshields, G., Brown, N.P. et al. Clustal W and clustal X version 2.0 Bioinformatics, 23 (2007),pp. 2947-2948
    [36]
    Lenffer, J., Nicholas, F.W., Castle, K. et al. OMIA (Online Mendelian Inheritance in Animals): an enhanced platform and integration into the Entrez search interface at NCBI Nucleic Acids Res., 34 (2006),pp. D599-D601
    [37]
    Libby, R.T., Anderson, M.G., Pang, I.-h. et al. Inherited glaucoma in DBA/2J mice: pertinent disease features for studying the neurodegeneration Vis. Neurosci., 22 (2005),pp. 637-648
    [38]
    Lovejoy, E.A., Clarke, A.R., Harrison, D.J. Animal models and the molecular pathology of cancer J. Pathol., 181 (1997),pp. 130-135
    [39]
    Mague, S.D., Isiegas, C., Huang, P. et al. Proc. Nat. Acad. Sci. U. S. A., 106 (2009),pp. 10847-10852
    [40]
    McKinnon, S.J., Schlamp, C.L., Nickells, R.W. Mouse models of retinal ganglion cell death and glaucoma Exp. Eye Res., 88 (2009),pp. 816-824
    [41]
    Messina, M., Wu, A.H. Perspectives on the soy-breast cancer relation Am. J. Clin. Nutr., 89 (2009),pp. 1673S-1679S
    [42]
    Omura, T., Omura, K., Tedeschi, A. et al. Robust axonal regeneration occurs in the injured CAST/Ei mouse CNS Neuron, 86 (2015),pp. 1215-1227
    [43]
    Ostlund, G., Schmitt, T., Forslund, K. et al. InParanoid 7: new algorithms and tools for eukaryotic orthology analysis Nucleic Acids Res., 38 (2010),pp. D196-D203
    [44]
    Pan, F., Zhang, K., Li, X. et al. Association of Fcγ receptor IIB gene polymorphism with genetic susceptibility to systemic lupus erythematosus in Chinese populations—a family-based association study J. Dematol. Sci., 43 (2006),pp. 35-41
    [45]
    Pattengale, P.K., Stewart, T.A., Leder, A. et al. Animal models of human disease. Pathology and molecular biology of spontaneous neoplasms occurring in transgenic mice carrying and expressing activated cellular oncogenes Am. J. Pathol., 135 (1989),pp. 39-61
    [46]
    Peng, X., Alföldi, J., Gori, K. et al. Nat. Biotechnol., 32 (2014),pp. 1250-1255
    [47]
    Phinikaridou, A., Hallock, K.J., Qiao, Y. et al. A robust rabbit model of human atherosclerosis and atherothrombosis J. Lipid Res., 50 (2009),pp. 787-797
    [48]
    Rangarajan, A., Weinberg, R.A. Nat. Rev. Cancer, 3 (2003),pp. 952-959
    [49]
    Rowell, J.L., McCarthy, D.O., Alvarez, C.E. Dog models of naturally occurring cancer Trends Mol. Med., 17 (2011),pp. 380-388
    [50]
    Schaefer, C.F., Anthony, K., Krupa, S. et al. PID: the pathway interaction database Nucleic Acids Res., 37 (2009),pp. D674-D679
    [51]
    Setchell, K.D.R., Brown, N.M., Zhao, X. et al. Soy isoflavone phase II metabolism differs between rodents and humans: implications for the effect on breast cancer risk Am. J. Clin. Nutr., 94 (2011),pp. 1284-1294
    [52]
    Shalem, O., Sanjana, N.E., Hartenian, E. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells Science, 343 (2014),pp. 84-87
    [53]
    Singh, P., Schimenti, J.C. The genetics of human infertility by functional interrogation of SNPs in mice Proc. Nat. Acad. Sci. U. S. A., 112 (2015),pp. 10431-10436
    [54]
    Sullivan, T.P., Eaglstein, W.H., Davis, S.C. et al. The pig as a model for human wound healing Wound Repair Regen., 9 (2001),pp. 66-76
    [55]
    Vassilopoulos, S., Esk, C., Hoshino, S. et al. A role for the CHC22 clathrin heavy-chain isoform in human glucose metabolism Sci. STKE, 324 (2009),p. 1192
    [56]
    Wang, T., Wei, J.J., Sabatini, D.M. et al. Genetic screens in human cells using the CRISPR-Cas9 system Science, 343 (2014),pp. 80-84
    [57]
    Wishart, D.S., Knox, C., Guo, A.C. et al. DrugBank: a knowledgebase for drugs, drug actions and drug targets Nucleic Acids Res., 36 (2008),pp. D901-D906
    [58]
    Woodruff-Pak, D.S., Agelan, A., Valle, L.D. A rabbit model of Alzheimer's disease: valid at neuropathological, cognitive, and therapeutic levels J. Alzheimers Dis., 11 (2007),pp. 371-383
    [59]
    Zhu, L.J., Holmes, B.R., Aronin, N. et al. CRISPRseek: a bioconductor package to identify target-specific guide RNAs for CRISPR-Cas9 genome-editing systems PLoS One, 9 (2014),p. e108424
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (102) PDF downloads (1) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return