[1] |
Ahasan, M.M., Wakae, K., Wang, Z. et al. APOBEC3A and 3C decrease human papillomavirus 16 pseudovirion infectivity Biochem. Biophys. Res. Commun., 457 (2015),pp. 295-299
|
[2] |
Alexandrov, L.B., Ju, Y.S., Haase, K. et al. Mutational signatures associated with tobacco smoking in human cancer Science, 354 (2016),pp. 618-622
|
[3] |
Alexandrov, L.B., Nik-Zainal, S., Wedge, D.C. et al. Signatures of mutational processes in human cancer Nature, 500 (2013),pp. 415-421
|
[4] |
Balakrishnan, L., Bambara, R.A. Okazaki fragment metabolism Cold Spring Harb. Perspect. Biol., 5 (2013)
|
[5] |
Barnes, D.E., Lindahl, T. Repair and genetic consequences of endogenous DNA base damage in mammalian cells Annu. Rev. Genet., 38 (2004),pp. 445-476
|
[6] |
Benayoun, B.A., Pollina, E.A., Brunet, A. Epigenetic regulation of ageing: linking environmental inputs to genomic stability Nat. Rev. Mol. Cell Biol., 16 (2015),pp. 593-610
|
[7] |
Bishop, K.N., Holmes, R.K., Sheehy, A.M. et al. Cytidine deamination of retroviral DNA by diverse APOBEC proteins Curr. Biol., 14 (2004),pp. 1392-1396
|
[8] |
Blanc, V., Kennedy, S., Davidson, N.O. A novel nuclear localization signal in the auxiliary domain of apobec-1 complementation factor regulates nucleocytoplasmic import and shuttling J. Biol. Chem., 278 (2003),pp. 41198-41204
|
[9] |
Bogerd, H.P., Doehle, B.P., Wiegand, H.L. et al. A single amino acid difference in the host APOBEC3G protein controls the primate species specificity of HIV type 1 virion infectivity factor Proc. Natl. Acad. Sci. U. S. A., 101 (2004),pp. 3770-3774
|
[10] |
Bohn, M.F., Shandilya, S.M., Albin, J.S. et al. Crystal structure of the DNA cytosine deaminase APOBEC3F: the catalytically active and HIV-1 Vif-binding domain Structure, 21 (2013),pp. 1042-1050
|
[11] |
Bohn, M.F., Shandilya, S.M., Silvas, T.V. et al. The ssDNA mutator APOBEC3A is regulated by cooperative dimerization Structure, 23 (2015),pp. 903-911
|
[12] |
Bransteitter, R., Pham, P., Scharff, M.D. et al. Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase Proc. Natl. Acad. Sci. U. S. A., 100 (2003),pp. 4102-4107
|
[13] |
Burns, M.B., Lackey, L., Carpenter, M.A. et al. APOBEC3B is an enzymatic source of mutation in breast cancer Nature, 494 (2013),pp. 366-370
|
[14] |
Burns, M.B., Temiz, N.A., Harris, R.S. Evidence for APOBEC3B mutagenesis in multiple human cancers Nat. Genet., 45 (2013),pp. 977-983
|
[15] |
Byeon, I.J., Ahn, J., Mitra, M. et al. NMR structure of human restriction factor APOBEC3A reveals substrate binding and enzyme specificity Nat. Commun., 4 (2013),p. 1890
|
[16] |
Byeon, I.J., Byeon, C.H., Wu, T. et al. Nuclear magnetic resonance structure of the APOBEC3B catalytic domain: structural basis for substrate binding and DNA deaminase activity Biochemistry, 55 (2016),pp. 2944-2959
|
[17] |
Caglayan, M., Wilson, S.H. Oxidant and environmental toxicant-induced effects compromise DNA ligation during base excision DNA repair DNA Repair, 35 (2015),pp. 85-89
|
[18] |
Caval, V., Suspene, R., Shapira, M. et al. Nat. Commun., 5 (2014),p. 5129
|
[19] |
Ceccaldi, R., Rondinelli, B., D'Andrea, A.D. Repair pathway choices and consequences at the double-strand break Trends Cell Biol., 26 (2016),pp. 52-64
|
[20] |
Cescon, D.W., Haibe-Kains, B., Mak, T.W. Proc. Natl. Acad. Sci. U. S. A., 112 (2015),pp. 2841-2846
|
[21] |
Chan, K., Roberts, S.A., Klimczak, L.J. et al. An APOBEC3A hypermutation signature is distinguishable from the signature of background mutagenesis by APOBEC3B in human cancers Nat. Genet., 47 (2015),pp. 1067-1072
|
[22] |
Chan, K., Sterling, J.F., Roberts, S.A. et al. PLoS Genet., 8 (2012),p. e1003149
|
[23] |
Chan, L., Chang, B.H., Nakamuta, M. et al. Apobec-1 and apolipoprotein B mRNA editing Biochim. Biophys. Acta, 1345 (1997),pp. 11-26
|
[24] |
Chelico, L., Pham, P., Calabrese, P. et al. APOBEC3G DNA deaminase acts processively 3′→5′ on single-stranded DNA Nat. Struct. Mol. Biol., 13 (2006),pp. 392-399
|
[25] |
Chen, B., Gilbert, L.A., Cimini, B.A. et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system Cell, 155 (2013),pp. 1479-1491
|
[26] |
Chen, H., Lilley, C.E., Yu, Q. et al. APOBEC3A is a potent inhibitor of adeno-associated virus and retrotransposons Curr. Biol., 16 (2006),pp. 480-485
|
[27] |
Chen, J., Furano, A.V. Breaking bad: the mutagenic effect of DNA repair DNA Repair, 32 (2015),pp. 43-51
|
[28] |
Chen, J., Miller, B.F., Furano, A.V. Repair of naturally occurring mismatches can induce mutations in flanking DNA eLife, 3 (2014),p. e02001
|
[29] |
Chen, K.M., Harjes, E., Gross, P.J. et al. Structure of the DNA deaminase domain of the HIV-1 restriction factor APOBEC3G Nature, 452 (2008),pp. 116-119
|
[30] |
Chen, Q., Xiao, X., Wolfe, A. et al. J. Mol. Biol., 428 (2016),pp. 2661-2670
|
[31] |
Chu, V.T., Weber, T., Wefers, B. et al. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells Nat. Biotechnol., 33 (2015),pp. 543-548
|
[32] |
Cong, L., Ran, F.A., Cox, D. et al. Multiplex genome engineering using CRISPR/Cas systems Science, 339 (2013),pp. 819-823
|
[33] |
Conticello, S.G., Harris, R.S., Neuberger, M.S. The Vif protein of HIV triggers degradation of the human antiretroviral DNA deaminase APOBEC3G Curr. Biol., 13 (2003),pp. 2009-2013
|
[34] |
Conticello, S.G., Thomas, C.J., Petersen-Mahrt, S.K. et al. Evolution of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases Mol. Biol. Evol., 22 (2005),pp. 367-377
|
[35] |
Cox, D.B., Platt, R.J., Zhang, F. Therapeutic genome editing: prospects and challenges Nat. Med., 21 (2015),pp. 121-131
|
[36] |
Cyranoski, D. Chinese scientists to pioneer first human CRISPR trial Nature, 535 (2016),pp. 476-477
|
[37] |
Cyranoski, D. CRISPR gene-editing tested in a person for the first time Nature, 539 (2016),p. 479
|
[38] |
Dang, Y., Wang, X., Esselman, W.J. et al. Identification of APOBEC3DE as another antiretroviral factor from the human APOBEC family J. Virol., 80 (2006),pp. 10522-10533
|
[39] |
Davidson, N.O., Anant, S., MacGinnitie, A.J. Apolipoprotein B messenger RNA editing: insights into the molecular regulation of post-transcriptional cytidine deamination Curr. Opin. Lipidol., 6 (1995),pp. 70-74
|
[40] |
Doehle, B.P., Schafer, A., Cullen, B.R. Human APOBEC3B is a potent inhibitor of HIV-1 infectivity and is resistant to HIV-1 Vif Virology, 339 (2005),pp. 281-288
|
[41] |
Dutko, J.A., Schafer, A., Kenny, A.E. et al. Inhibition of a yeast LTR retrotransposon by human APOBEC3 cytidine deaminases Curr. Biol., 15 (2005),pp. 661-666
|
[42] |
Esnault, C., Heidmann, O., Delebecque, F. et al. APOBEC3G cytidine deaminase inhibits retrotransposition of endogenous retroviruses Nature, 433 (2005),pp. 430-433
|
[43] |
Etard, C., Roostalu, U., Strahle, U. Lack of Apobec2-related proteins causes a dystrophic muscle phenotype in zebrafish embryos J. Cell Biol., 189 (2010),pp. 527-539
|
[44] |
Faltas, B.M., Prandi, D., Tagawa, S.T. et al. Clonal evolution of chemotherapy-resistant urothelial carcinoma Nat. Genet., 48 (2016),pp. 1490-1499
|
[45] |
Furukawa, A., Nagata, T., Matsugami, A. et al. Structure, interaction and real-time monitoring of the enzymatic reaction of wild-type APOBEC3G EMBO J., 28 (2009),pp. 440-451
|
[46] |
Gilbert, L.A., Horlbeck, M.A., Adamson, B. et al. Genome-scale CRISPR-mediated control of gene repression and activation Cell, 159 (2014),pp. 647-661
|
[47] |
Gooch, B.D., Cullen, B.R. Functional domain organization of human APOBEC3G Virology, 379 (2008),pp. 118-124
|
[48] |
Greenman, C., Stephens, P., Smith, R. et al. Patterns of somatic mutation in human cancer genomes Nature, 446 (2007),pp. 153-158
|
[49] |
Greider, C.W. Telomeres do D-loop-T-loop Cell, 97 (1999),pp. 419-422
|
[50] |
Haradhvala, N.J., Polak, P., Stojanov, P. et al. Mutational strand asymmetries in cancer genomes reveal mechanisms of DNA damage and repair Cell, 164 (2016),pp. 538-549
|
[51] |
Harjes, E., Gross, P.J., Chen, K.M. et al. An extended structure of the APOBEC3G catalytic domain suggests a unique holoenzyme model J. Mol. Biol., 389 (2009),pp. 819-832
|
[52] |
Harris, R.S., Bishop, K.N., Sheehy, A.M. et al. DNA deamination mediates innate immunity to retroviral infection Cell, 113 (2003),pp. 803-809
|
[53] |
Harris, R.S., Dudley, J.P. APOBECs and virus restriction Virology, 479–480 (2015),pp. 131-145
|
[54] |
Harris, R.S., Liddament, M.T. Retroviral restriction by APOBEC proteins Nat. Rev. Immunol., 4 (2004),pp. 868-877
|
[55] |
Harris, R.S., Petersen-Mahrt, S.K., Neuberger, M.S. RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators Mol. Cell, 10 (2002),pp. 1247-1253
|
[56] |
Hasler, J., Rada, C., Neuberger, M.S. Cytoplasmic activation-induced cytidine deaminase (AID) exists in stoichiometric complex with translation elongation factor 1alpha (eEF1A) Proc. Natl. Acad. Sci. U. S. A., 108 (2011),pp. 18366-18371
|
[57] |
Henderson, S., Chakravarthy, A., Su, X. et al. APOBEC-mediated cytosine deamination links PIK3CA helical domain mutations to human papillomavirus-driven tumor development Cell Rep., 7 (2014),pp. 1833-1841
|
[58] |
Hess, G.T., Fresard, L., Han, K. et al. Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells Nat. Methods, 13 (2016),pp. 1036-1042
|
[59] |
Holden, L.G., Prochnow, C., Chang, Y.P. et al. Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications Nature, 456 (2008),pp. 121-124
|
[60] |
Hoopes, J.I., Cortez, L.M., Mertz, T.M. et al. APOBEC3A and APOBEC3B preferentially deaminate the lagging strand template during DNA replication Cell Rep., 14 (2016),pp. 1273-1282
|
[61] |
Hulme, A.E., Bogerd, H.P., Cullen, B.R. et al. Selective inhibition of Alu retrotransposition by APOBEC3G Gene, 390 (2007),pp. 199-205
|
[62] |
Hultquist, J.F., Lengyel, J.A., Refsland, E.W. et al. Human and rhesus APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H demonstrate a conserved capacity to restrict Vif-deficient HIV-1 J. Virol., 85 (2011),pp. 11220-11234
|
[63] |
Huthoff, H., Autore, F., Gallois-Montbrun, S. et al. RNA-dependent oligomerization of APOBEC3G is required for restriction of HIV-1 PLoS Pathog., 5 (2009),p. e1000330
|
[64] |
Huthoff, H., Malim, M.H. Identification of amino acid residues in APOBEC3G required for regulation by human immunodeficiency virus type 1 Vif and Virion encapsidation J. Virol., 81 (2007),pp. 3807-3815
|
[65] |
Ito, S., Nagaoka, H., Shinkura, R. et al. Activation-induced cytidine deaminase shuttles between nucleus and cytoplasm like apolipoprotein B mRNA editing catalytic polypeptide 1 Proc. Natl. Acad. Sci. U. S. A., 101 (2004),pp. 1975-1980
|
[66] |
Jarmuz, A., Chester, A., Bayliss, J. et al. An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22 Genomics, 79 (2002),pp. 285-296
|
[67] |
Jiang, F., Taylor, D.W., Chen, J.S. et al. Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage Science, 351 (2016),pp. 867-871
|
[68] |
Jinek, M., Chylinski, K., Fonfara, I. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity Science, 337 (2012),pp. 816-821
|
[69] |
Kanu, N., Cerone, M.A., Goh, G. et al. DNA replication stress mediates APOBEC3 family mutagenesis in breast cancer Genome Biol., 17 (2016),p. 185
|
[70] |
Kazanov, M.D., Roberts, S.A., Polak, P. et al. APOBEC-induced cancer mutations are uniquely enriched in early-replicating, gene-dense, and active chromatin regions Cell Rep., 13 (2015),pp. 1103-1109
|
[71] |
Kim, D., Lim, K., Kim, S.T. et al. Genome-wide target specificities of CRISPR RNA-guided programmable deaminases Nat. Biotechnol., 35 (2017),pp. 475-480
|
[72] |
Kim, K., Ryu, S.M., Kim, S.T. et al. Highly efficient RNA-guided base editing in mouse embryos Nat. Biotechnol., 35 (2017),pp. 435-437
|
[73] |
Kim, Y.B., Komor, A.C., Levy, J.M. et al. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions Nat. Biotechnol., 35 (2017),pp. 371-376
|
[74] |
Kinomoto, M., Kanno, T., Shimura, M. et al. All APOBEC3 family proteins differentially inhibit LINE-1 retrotransposition Nucleic Acids Res., 35 (2007),pp. 2955-2964
|
[75] |
Kinoshita, K., Honjo, T. Linking class-switch recombination with somatic hypermutation Nat. Rev. Mol. Cell Biol., 2 (2001),pp. 493-503
|
[76] |
Kitamura, S., Ode, H., Nakashima, M. et al. The APOBEC3C crystal structure and the interface for HIV-1 Vif binding. Nat Struct. Mol. Biol., 19 (2012),pp. 1005-1010
|
[77] |
Kock, J., Blum, H.E. Hypermutation of hepatitis B virus genomes by APOBEC3G, APOBEC3C and APOBEC3H J. Gen. Virol., 89 (2008),pp. 1184-1191
|
[78] |
Komor, A.C., Badran, A.H., Liu, D.R. CRISPR-based technologies for the manipulation of eukaryotic genomes Cell, 168 (2017),pp. 20-36
|
[79] |
Komor, A.C., Kim, Y.B., Packer, M.S. et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage Nature, 533 (2016),pp. 420-424
|
[80] |
Konermann, S., Brigham, M.D., Trevino, A.E. et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex Nature, 517 (2015),pp. 583-588
|
[81] |
Kuscu, C., Parlak, M., Tufan, T. et al. CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations Nat. Methods, 14 (2017),pp. 710-712
|
[82] |
Landrum, M.J., Lee, J.M., Riley, G.R. et al. ClinVar: public archive of relationships among sequence variation and human phenotype Nucleic Acids Res., 42 (2014),pp. D980-D985
|
[83] |
Lecossier, D., Bouchonnet, F., Clavel, F. et al. Hypermutation of HIV-1 DNA in the absence of the Vif protein Science, 300 (2003),p. 1112
|
[84] |
Leonard, B., Hart, S.N., Burns, M.B. et al. APOBEC3B upregulation and genomic mutation patterns in serous ovarian carcinoma Cancer Res., 73 (2013),pp. 7222-7231
|
[85] |
Li, M., Shandilya, S.M., Carpenter, M.A. et al. First-in-class small molecule inhibitors of the single-strand DNA cytosine deaminase APOBEC3G ACS Chem. Biol., 7 (2012),pp. 506-517
|
[86] |
Liang, P., Sun, H., Sun, Y. et al. Effective gene editing by high-fidelity base editor 2 in mouse zygotes Protein Cell, 8 (2017),pp. 601-611
|
[87] |
Liao, W., Hong, S.H., Chan, B.H. et al. APOBEC-2, a cardiac- and skeletal muscle-specific member of the cytidine deaminase supergene family Biochem. Biophys. Res. Commun., 260 (1999),pp. 398-404
|
[88] |
Liddament, M.T., Brown, W.L., Schumacher, A.J. et al. Curr. Biol., 14 (2004),pp. 1385-1391
|
[89] |
Liu, X.S., Wu, H., Ji, X. et al. Editing DNA methylation in the mammalian genome Cell, 167 (2016),pp. 233-247
|
[90] |
Long, J., Delahanty, R.J., Li, G. et al. J. Natl. Cancer Inst., 105 (2013),pp. 573-579
|
[91] |
Lu, X., Zhang, T., Xu, Z. et al. Crystal structure of DNA cytidine deaminase ABOBEC3G catalytic deamination domain suggests a binding mode of full-length enzyme to single-stranded DNA J. Biol. Chem., 290 (2015),pp. 4010-4021
|
[92] |
Lu, Y., Zhu, J.K. Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system Mol. Plant, 10 (2017),pp. 523-525
|
[93] |
Luo, K., Wang, T., Liu, B. et al. Cytidine deaminases APOBEC3G and APOBEC3F interact with human immunodeficiency virus type 1 integrase and inhibit proviral DNA formation J. Virol., 81 (2007),pp. 7238-7248
|
[94] |
Ma, H., Tu, L.C., Naseri, A. et al. Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow Nat. Biotechnol., 34 (2016),pp. 528-530
|
[95] |
Ma, Y., Zhang, J., Yin, W. et al. Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells Nat. Methods, 13 (2016),pp. 1029-1035
|
[96] |
Maciejowski, J., Li, Y., Bosco, N. et al. Chromothripsis and kataegis induced by telomere crisis Cell, 163 (2015),pp. 1641-1654
|
[97] |
Mali, P., Aach, J., Stranges, P.B. et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering Nat. Biotechnol., 31 (2013),pp. 833-838
|
[98] |
Mali, P., Yang, L., Esvelt, K.M. et al. RNA-guided human genome engineering via Cas9 Science, 339 (2013),pp. 823-826
|
[99] |
Mangeat, B., Turelli, P., Caron, G. et al. Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts Nature, 424 (2003),pp. 99-103
|
[100] |
Mariani, R., Chen, D., Schrofelbauer, B. et al. Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif Cell, 114 (2003),pp. 21-31
|
[101] |
Marin, M., Golem, S., Rose, K.M. et al. Human immunodeficiency virus type 1 Vif functionally interacts with diverse APOBEC3 cytidine deaminases and moves with them between cytoplasmic sites of mRNA metabolism J. Virol., 82 (2008),pp. 987-998
|
[102] |
Marino, D., Perkovic, M., Hain, A. et al. APOBEC4 enhances the replication of HIV-1 PLoS One, 11 (2016),p. e0155422
|
[103] |
Maruyama, T., Dougan, S.K., Truttmann, M.C. et al. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining Nat. Biotechnol., 33 (2015),pp. 538-542
|
[104] |
Mbisa, J.L., Barr, R., Thomas, J.A. et al. Human immunodeficiency virus type 1 cDNAs produced in the presence of APOBEC3G exhibit defects in plus-strand DNA transfer and integration J. Virol., 81 (2007),pp. 7099-7110
|
[105] |
Mehta, A., Kinter, M.T., Sherman, N.E. et al. Molecular cloning of apobec-1 complementation factor, a novel RNA-binding protein involved in the editing of apolipoprotein B mRNA Mol. Cell Biol., 20 (2000),pp. 1846-1854
|
[106] |
Middlebrooks, C.D., Banday, A.R., Matsuda, K. et al. Association of germline variants in the APOBEC3 region with cancer risk and enrichment with APOBEC-signature mutations in tumors Nat. Genet., 48 (2016),pp. 1330-1338
|
[107] |
Mikl, M.C., Watt, I.N., Lu, M. et al. Mice deficient in APOBEC2 and APOBEC3 Mol. Cell Biol., 25 (2005),pp. 7270-7277
|
[108] |
Minegishi, Y., Lavoie, A., Cunningham-Rundles, C. et al. Mutations in activation-induced cytidine deaminase in patients with hyper IgM syndrome Clin. Immunol., 97 (2000),pp. 203-210
|
[109] |
Morganella, S., Alexandrov, L.B., Glodzik, D. et al. The topography of mutational processes in breast cancer genomes Nat. Commun., 7 (2016),p. 11383
|
[110] |
Morita, S., Noguchi, H., Horii, T. et al. Nat. Biotechnol., 34 (2016),pp. 1060-1065
|
[111] |
Mukhopadhyay, D., Anant, S., Lee, R.M. et al. C→U editing of neurofibromatosis 1 mRNA occurs in tumors that express both the type II transcript and apobec-1, the catalytic subunit of the apolipoprotein B mRNA-editing enzyme Am. J. Hum. Genet., 70 (2002),pp. 38-50
|
[112] |
Muramatsu, M., Kinoshita, K., Fagarasan, S. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme Cell, 102 (2000),pp. 553-563
|
[113] |
Muramatsu, M., Sankaranand, V.S., Anant, S. et al. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells J. Biol. Chem., 274 (1999),pp. 18470-18476
|
[114] |
Nakamura, H., Arai, Y., Totoki, Y. et al. Genomic spectra of biliary tract cancer Nat. Genet., 47 (2015),pp. 1003-1010
|
[115] |
Nakashima, M., Ode, H., Kawamura, T. et al. Structural insights into HIV-1 Vif-APOBEC3F interaction J. Virol., 90 (2015),pp. 1034-1047
|
[116] |
Narvaiza, I., Linfesty, D.C., Greener, B.N. et al. Deaminase-independent inhibition of parvoviruses by the APOBEC3A cytidine deaminase PLoS Pathog., 5 (2009),p. e1000439
|
[117] |
Navarro, F., Bollman, B., Chen, H. et al. Complementary function of the two catalytic domains of APOBEC3G Virology, 333 (2005),pp. 374-386
|
[118] |
Newman, E.N., Holmes, R.K., Craig, H.M. et al. Antiviral function of APOBEC3G can be dissociated from cytidine deaminase activity Curr. Biol., 15 (2005),pp. 166-170
|
[119] |
Nik-Zainal, S., Alexandrov, L.B., Wedge, D.C. et al. Mutational processes molding the genomes of 21 breast cancers Cell, 149 (2012),pp. 979-993
|
[120] |
Nik-Zainal, S., Davies, H., Staaf, J. et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences Nature, 534 (2016),pp. 47-54
|
[121] |
Nik-Zainal, S., Wedge, D.C., Alexandrov, L.B. et al. Nat. Genet., 46 (2014),pp. 487-491
|
[122] |
Nishida, K., Arazoe, T., Yachie, N. et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems Science, 353 (2016)
|
[123] |
Noguchi, C., Ishino, H., Tsuge, M. et al. G to A hypermutation of hepatitis B virus Hepatology, 41 (2005),pp. 626-633
|
[124] |
Nordentoft, I., Lamy, P., Birkenkamp-Demtroder, K. et al. Mutational context and diverse clonal development in early and late bladder cancer Cell Rep., 7 (2014),pp. 1649-1663
|
[125] |
O'Hare, T., Eide, C.A., Deininger, M.W. Bcr-Abl kinase domain mutations, drug resistance, and the road to a cure for chronic myeloid leukemia Blood, 110 (2007),pp. 2242-2249
|
[126] |
Okuyama, S., Marusawa, H., Matsumoto, T. et al. Excessive activity of apolipoprotein B mRNA editing enzyme catalytic polypeptide 2 (APOBEC2) contributes to liver and lung tumorigenesis Int. J. Cancer, 130 (2012),pp. 1294-1301
|
[127] |
Orthwein, A., Patenaude, A.M., Affar el, B. et al. Regulation of activation-induced deaminase stability and antibody gene diversification by Hsp90 J. Exp. Med., 207 (2010),pp. 2751-2765
|
[128] |
Paquet, D., Kwart, D., Chen, A. et al. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9 Nature, 533 (2016),pp. 125-129
|
[129] |
Periyasamy, M., Patel, H., Lai, C.F. et al. APOBEC3B-mediated cytidine deamination is required for estrogen receptor action in breast cancer Cell Rep., 13 (2015),pp. 108-121
|
[130] |
Pham, P., Bransteitter, R., Petruska, J. et al. Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation Nature, 424 (2003),pp. 103-107
|
[131] |
Pinder, J., Salsman, J., Dellaire, G. Nuclear domain ‘knock-in’ screen for the evaluation and identification of small molecule enhancers of CRISPR-based genome editing Nucleic Acids Res., 43 (2015),pp. 9379-9392
|
[132] |
Pinto, Y., Gabay, O., Arbiza, L. et al. Clustered mutations in hominid genome evolution are consistent with APOBEC3G enzymatic activity Genome Res., 26 (2016),pp. 579-587
|
[133] |
Prochnow, C., Bransteitter, R., Klein, M.G. et al. The APOBEC-2 crystal structure and functional implications for the deaminase AID Nature, 445 (2007),pp. 447-451
|
[134] |
Qi, L.S., Larson, M.H., Gilbert, L.A. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression Cell, 152 (2013),pp. 1173-1183
|
[135] |
Ran, F.A., Hsu, P.D., Lin, C.Y. et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity Cell, 154 (2013),pp. 1380-1389
|
[136] |
Rathore, A., Carpenter, M.A., Demir, O. et al. The local dinucleotide preference of APOBEC3G can be altered from 5′-CC to 5′-TC by a single amino acid substitution J. Mol. Biol., 425 (2013),pp. 4442-4454
|
[137] |
Rees, H.A., Komor, A.C., Yeh, W.H. et al. Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery Nat. Commun., 8 (2017),p. 15790
|
[138] |
Ren, X., Yang, Z., Xu, J. et al. Cell Rep., 9 (2014),pp. 1151-1162
|
[139] |
Revy, P., Muto, T., Levy, Y. et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2) Cell, 102 (2000),pp. 565-575
|
[140] |
Richardson, C.D., Ray, G.J., DeWitt, M.A. et al. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA Nat. Biotechnol., 34 (2016),pp. 339-344
|
[141] |
Richardson, S.R., Narvaiza, I., Planegger, R.A. et al. APOBEC3A deaminates transiently exposed single-strand DNA during LINE-1 retrotransposition eLife, 3 (2014),p. e02008
|
[142] |
Robert, F., Barbeau, M., Ethier, S. et al. Pharmacological inhibition of DNA-PK stimulates Cas9-mediated genome editing Genome Med., 7 (2015),p. 93
|
[143] |
Roberts, S.A., Gordenin, D.A. Hypermutation in human cancer genomes: footprints and mechanisms Nat. Rev. Cancer, 14 (2014),pp. 786-800
|
[144] |
Roberts, S.A., Lawrence, M.S., Klimczak, L.J. et al. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers Nat. Genet., 45 (2013),pp. 970-976
|
[145] |
Roberts, S.A., Sterling, J., Thompson, C. et al. Clustered mutations in yeast and in human cancers can arise from damaged long single-strand DNA regions Mol. Cell, 46 (2012),pp. 424-435
|
[146] |
Rogozin, I.B., Basu, M.K., Jordan, I.K. et al. APOBEC4, a new member of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases predicted by computational analysis Cell Cycle, 4 (2005),pp. 1281-1285
|
[147] |
Rosenberg, B.R., Hamilton, C.E., Mwangi, M.M. et al. Transcriptome-wide sequencing reveals numerous APOBEC1 mRNA-editing targets in transcript 3′ UTRs Nat. Struct. Mol. Biol., 18 (2011),pp. 230-236
|
[148] |
Rosler, C., Kock, J., Kann, M. et al. APOBEC-mediated interference with hepadnavirus production Hepatology, 42 (2005),pp. 301-309
|
[149] |
Russell, R.A., Smith, J., Barr, R. et al. Distinct domains within APOBEC3G and APOBEC3F interact with separate regions of human immunodeficiency virus type 1 Vif J. Virol., 83 (2009),pp. 1992-2003
|
[150] |
Russell, R.A., Wiegand, H.L., Moore, M.D. et al. Foamy virus Bet proteins function as novel inhibitors of the APOBEC3 family of innate antiretroviral defense factors J. Virol., 79 (2005),pp. 8724-8731
|
[151] |
Salter, J.D., Bennett, R.P., Smith, H.C. The APOBEC protein family: united by structure, divergent in function Trends Biochem. Sci., 41 (2016),pp. 578-594
|
[152] |
Salter, J.D., Morales, G.A., Smith, H.C. Structural insights for HIV-1 therapeutic strategies targeting Vif Trends Biochem. Sci., 39 (2014),pp. 373-380
|
[153] |
Sasada, A., Takaori-Kondo, A., Shirakawa, K. et al. APOBEC3G targets human T-cell leukemia virus type 1 Retrovirology, 2 (2005),p. 32
|
[154] |
Sato, Y., Probst, H.C., Tatsumi, R. et al. Deficiency in APOBEC2 leads to a shift in muscle fiber type, diminished body mass, and myopathy J. Biol. Chem., 285 (2010),pp. 7111-7118
|
[155] |
Schafer, A., Bogerd, H.P., Cullen, B.R. Specific packaging of APOBEC3G into HIV-1 virions is mediated by the nucleocapsid domain of the gag polyprotein precursor Virology, 328 (2004),pp. 163-168
|
[156] |
Schrader, C.E., Guikema, J.E., Wu, X. et al. The roles of APE1, APE2, DNA polymerase beta and mismatch repair in creating S region DNA breaks during antibody class switch Philos. Trans. R. Soc. Lond B Biol. Sci., 364 (2009),pp. 645-652
|
[157] |
Schrofelbauer, B., Chen, D., Landau, N.R. A single amino acid of APOBEC3G controls its species-specific interaction with virion infectivity factor (Vif) Proc. Natl. Acad. Sci. U. S. A., 101 (2004),pp. 3927-3932
|
[158] |
Schumacher, A.J., Nissley, D.V., Harris, R.S. APOBEC3G hypermutates genomic DNA and inhibits Ty1 retrotransposition in yeast Proc. Natl. Acad. Sci. U. S. A., 102 (2005),pp. 9854-9859
|
[159] |
Schumann, K., Lin, S., Boyer, E. et al. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins Proc. Natl. Acad. Sci. U. S. A., 112 (2015),pp. 10437-10442
|
[160] |
Seplyarskiy, V.B., Soldatov, R.A., Popadin, K.Y. et al. APOBEC-induced mutations in human cancers are strongly enriched on the lagging DNA strand during replication Genome Res., 26 (2016),pp. 174-182
|
[161] |
Shaban, N.M., Shi, K., Li, M. et al. 1.92 angstrom zinc-free APOBEC3F catalytic domain crystal structure J. Mol. Biol., 428 (2016),pp. 2307-2316
|
[162] |
Shandilya, S.M., Nalam, M.N., Nalivaika, E.A. et al. Crystal structure of the APOBEC3G catalytic domain reveals potential oligomerization interfaces Structure, 18 (2010),pp. 28-38
|
[163] |
Sheehy, A.M., Gaddis, N.C., Choi, J.D. et al. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein Nature, 418 (2002),pp. 646-650
|
[164] |
Sheehy, A.M., Gaddis, N.C., Malim, M.H. The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif Nat. Med., 9 (2003),pp. 1404-1407
|
[165] |
Shen, B., Zhang, W., Zhang, J. et al. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects Nat. Methods, 11 (2014),pp. 399-402
|
[166] |
Shi, K., Carpenter, M.A., Banerjee, S. et al. Structural basis for targeted DNA cytosine deamination and mutagenesis by APOBEC3A and APOBEC3B Nat. Struct. Mol. Biol., 24 (2017),pp. 131-139
|
[167] |
Shi, K., Carpenter, M.A., Kurahashi, K. et al. Crystal structure of the DNA deaminase APOBEC3B catalytic domain J. Biol. Chem., 290 (2015),pp. 28120-28130
|
[168] |
Shimatani, Z., Kashojiya, S., Takayama, M. et al. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion Nat. Biotechnol., 35 (2017),pp. 441-443
|
[169] |
Shindo, K., Takaori-Kondo, A., Kobayashi, M. et al. The enzymatic activity of CEM15/Apobec-3G is essential for the regulation of the infectivity of HIV-1 virion but not a sole determinant of its antiviral activity J. Biol. Chem., 278 (2003),pp. 44412-44416
|
[170] |
Siu, K.K., Sultana, A., Azimi, F.C. et al. Structural determinants of HIV-1 Vif susceptibility and DNA binding in APOBEC3F Nat. Commun., 4 (2013),p. 2593
|
[171] |
Skourti-Stathaki, K., Proudfoot, N.J. A double-edged sword: R loops as threats to genome integrity and powerful regulators of gene expression Genes Dev., 28 (2014),pp. 1384-1396
|
[172] |
Smith, J.L., Pathak, V.K. Identification of specific determinants of human APOBEC3F, APOBEC3C, and APOBEC3DE and African green monkey APOBEC3F that interact with HIV-1 Vif J. Virol., 84 (2010),pp. 12599-12608
|
[173] |
Song, J., Yang, D., Xu, J. et al. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency Nat. Commun., 7 (2016),p. 10548
|
[174] |
Starrett, G.J., Luengas, E.M., McCann, J.L. et al. The DNA cytosine deaminase APOBEC3H haplotype I likely contributes to breast and lung cancer mutagenesis Nat. Commun., 7 (2016),p. 12918
|
[175] |
Stenglein, M.D., Harris, R.S. APOBEC3B and APOBEC3F inhibit L1 retrotransposition by a DNA deamination-independent mechanism J. Biol. Chem., 281 (2006),pp. 16837-16841
|
[176] |
Stephens, P., Edkins, S., Davies, H. et al. A screen of the complete protein kinase gene family identifies diverse patterns of somatic mutations in human breast cancer Nat. Genet., 37 (2005),pp. 590-592
|
[177] |
Stopak, K., de Noronha, C., Yonemoto, W. et al. HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability Mol. Cell, 12 (2003),pp. 591-601
|
[178] |
Suspene, R., Aynaud, M.M., Guetard, D. et al. Somatic hypermutation of human mitochondrial and nuclear DNA by APOBEC3 cytidine deaminases, a pathway for DNA catabolism Proc. Natl. Acad. Sci. U. S. A., 108 (2011),pp. 4858-4863
|
[179] |
Suspene, R., Guetard, D., Henry, M. et al. Proc. Natl. Acad. Sci. U. S. A., 102 (2005),pp. 8321-8326
|
[180] |
Taylor, B.J., Nik-Zainal, S., Wu, Y.L. et al. DNA deaminases induce break-associated mutation showers with implication of APOBEC3B and 3A in breast cancer kataegis eLife, 2 (2013),p. e00534
|
[181] |
Taylor, B.J., Wu, Y.L., Rada, C. Active RNAP pre-initiation sites are highly mutated by cytidine deaminases in yeast, with AID targeting small RNA genes eLife, 3 (2014),p. e03553
|
[182] |
Teng, B., Burant, C.F., Davidson, N.O. Molecular cloning of an apolipoprotein B messenger RNA editing protein Science, 260 (1993),pp. 1816-1819
|
[183] |
Tsai, S.Q., Wyvekens, N., Khayter, C. et al. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing Nat. Biotechnol., 32 (2014),pp. 569-576
|
[184] |
Turelli, P., Mangeat, B., Jost, S. et al. Inhibition of hepatitis B virus replication by APOBEC3G Science, 303 (2004),p. 1829
|
[185] |
Vartanian, J.P., Guetard, D., Henry, M. et al. Evidence for editing of human papillomavirus DNA by APOBEC3 in benign and precancerous lesions Science, 320 (2008),pp. 230-233
|
[186] |
Verhalen, B., Starrett, G.J., Harris, R.S. et al. Functional upregulation of the DNA cytosine deaminase APOBEC3B by polyomaviruses J. Virol., 90 (2016),pp. 6379-6386
|
[187] |
Vojta, A., Dobrinic, P., Tadic, V. et al. Repurposing the CRISPR-Cas9 system for targeted DNA methylation Nucleic Acids Res., 44 (2016),pp. 5615-5628
|
[188] |
Walker, B.A., Wardell, C.P., Murison, A. et al. APOBEC family mutational signatures are associated with poor prognosis translocations in multiple myeloma Nat. Commun., 6 (2015),p. 6997
|
[189] |
Walser, J.C., Furano, A.V. The mutational spectrum of non-CpG DNA varies with CpG content Genome Res., 20 (2010),pp. 875-882
|
[190] |
Walser, J.C., Ponger, L., Furano, A.V. CpG dinucleotides and the mutation rate of non-CpG DNA Genome Res., 18 (2008),pp. 1403-1414
|
[191] |
Wiegand, H.L., Cullen, B.R. Inhibition of alpharetrovirus replication by a range of human APOBEC3 proteins J. Virol., 81 (2007),pp. 13694-13699
|
[192] |
Wiegand, H.L., Doehle, B.P., Bogerd, H.P. et al. A second human antiretroviral factor, APOBEC3F, is suppressed by the HIV-1 and HIV-2 Vif proteins EMBO J., 23 (2004),pp. 2451-2458
|
[193] |
Wilson, S.H. The dark side of DNA repair eLife, 3 (2014),p. e03068
|
[194] |
Xiao, X., Li, S.X., Yang, H. et al. Crystal structures of APOBEC3G N-domain alone and its complex with DNA Nat. Commun., 7 (2016),p. 12193
|
[195] |
Xu, X., Tao, Y., Gao, X. et al. A CRISPR-based approach for targeted DNA demethylation Cell Discov., 2 (2016),p. 16009
|
[196] |
Yang, Y., Yang, Y., Smith, H.C. Multiple protein domains determine the cell type-specific nuclear distribution of the catalytic subunit required for apolipoprotein B mRNA editing Proc. Natl. Acad. Sci. U. S. A., 94 (1997),pp. 13075-13080
|
[197] |
Yu, C., Liu, Y., Ma, T. et al. Small molecules enhance CRISPR genome editing in pluripotent stem cells Cell Stem Cell, 16 (2015),pp. 142-147
|
[198] |
Yu, Q., Chen, D., Konig, R. et al. APOBEC3B and APOBEC3C are potent inhibitors of simian immunodeficiency virus replication J. Biol. Chem., 279 (2004),pp. 53379-53386
|
[199] |
Yu, Q., Konig, R., Pillai, S. et al. Single-strand specificity of APOBEC3G accounts for minus-strand deamination of the HIV genome Nat. Struct. Mol. Biol., 11 (2004),pp. 435-442
|
[200] |
Yu, X., Yu, Y., Liu, B. et al. Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex Science, 302 (2003),pp. 1056-1060
|
[201] |
Zalatan, J.G., Lee, M.E., Almeida, R. et al. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds Cell, 160 (2015),pp. 339-350
|
[202] |
Zhang, H., Yang, B., Pomerantz, R.J. et al. The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA Nature, 424 (2003),pp. 94-98
|
[203] |
Zhang, Y., Qin, W., Lu, X. et al. Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system Nat. Commun., 8 (2017),p. 118
|
[204] |
Zheng, H., Dai, W., Cheung, A.K. et al. Whole-exome sequencing identifies multiple loss-of-function mutations of NF-kappaB pathway regulators in nasopharyngeal carcinoma Proc. Natl. Acad. Sci. U. S. A., 113 (2016),pp. 11283-11288
|
[205] |
Zhou, Y., Zhu, S., Cai, C. et al. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells Nature, 509 (2014),pp. 487-491
|
[206] |
Zong, Y., Wang, Y., Li, C. et al. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion Nat. Biotechnol., 35 (2017),pp. 438-440
|