[1] |
Ajani, J.A., Bentrem, D.J., Besh, S. et al. Gastric cancer, version 2.2013: featured updates to the NCCN Guidelines J. Natl. Compr. Canc. Netw., 11 (2013),pp. 531-546
|
[2] |
Alonso, S., Hernandez, D., Chang, Y.T. et al. Hedgehog and retinoid signaling alters multiple myeloma microenvironment and generates bortezomib resistance J. Clin. Invest., 126 (2016),pp. 4460-4468
|
[3] |
Basset-Seguin, N., Sharpe, H.J., de Sauvage, F.J. Efficacy of Hedgehog pathway inhibitors in Basal cell carcinoma Mol. Cancer Ther., 14 (2015),pp. 633-641
|
[4] |
Bernards, N., Creemers, G.J., Nieuwenhuijzen, G.A. et al. No improvement in median survival for patients with metastatic gastric cancer despite increased use of chemotherapy Ann. Oncol., 24 (2013),pp. 3056-3060
|
[5] |
Chen, T., Yang, K., Yu, J. et al. Identification and expansion of cancer stem cells in tumor tissues and peripheral blood derived from gastric adenocarcinoma patients Cell Res., 22 (2012),pp. 248-258
|
[6] |
Chen, W., Zhang, X., Chu, C. et al. Identification of CD44+ cancer stem cells in human gastric cancer Hepatogastroenterology, 60 (2013),pp. 949-954
|
[7] |
Cho, R.W., Clarke, M.F. Recent advances in cancer stem cells Curr. Opin. Genet. Dev., 18 (2008),pp. 48-53
|
[8] |
Cunningham, D., Allum, W.H., Stenning, S.P. et al. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer N. Engl. J. Med., 355 (2006),pp. 11-20
|
[9] |
Della Corte, C.M., Bellevicine, C., Vicidomini, G. et al. Clin. Cancer Res., 21 (2015),pp. 4686-4697
|
[10] |
Domingo-Domenech, J., Vidal, S.J., Rodriguez-Bravo, V. et al. Suppression of acquired docetaxel resistance in prostate cancer through depletion of notch- and hedgehog-dependent tumor-initiating cells Cancer Cell, 22 (2012),pp. 373-388
|
[11] |
Dong, J., Li, J., Liu, S.M. et al. CD33(+)/p-STAT1(+) double-positive cell as a prognostic factor for stage IIIa gastric cancer Med. Oncol., 30 (2013),p. 442
|
[12] |
Feldmann, G., Dhara, S., Fendrich, V. et al. Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers Cancer Res., 67 (2007),pp. 2187-2196
|
[13] |
Ferlay, J., Soerjomataram, I., Dikshit, R. et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012 Int. J. Cancer, 136 (2015),pp. E359-E386
|
[14] |
Fukamachi, H., Shimada, S., Ito, K. et al. CD133 is a marker of gland-forming cells in gastric tumors and Sox17 is involved in its regulation Cancer Sci., 102 (2011),pp. 1313-1321
|
[15] |
Ikram, M.S., Neill, G.W., Regl, G. et al. GLI2 is expressed in normal human epidermis and BCC and induces GLI1 expression by binding to its promoter J. Invest. Dermatol., 122 (2004),pp. 1503-1509
|
[16] |
Ishimoto, T., Nagano, O., Yae, T. et al. CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(-) and thereby promotes tumor growth Cancer Cell, 19 (2011),pp. 387-400
|
[17] |
Jiang, J., Zhang, Y., Chuai, S. et al. Trastuzumab (herceptin) targets gastric cancer stem cells characterized by CD90 phenotype Oncogene, 31 (2012),pp. 671-682
|
[18] |
Jiang, Y., He, Y., Li, H. et al. Expressions of putative cancer stem cell markers ABCB1, ABCG2, and CD133 are correlated with the degree of differentiation of gastric cancer Gastric Cancer, 15 (2012),pp. 440-450
|
[19] |
Keysar, S.B., Le, P.N., Anderson, R.T. et al. Hedgehog signaling alters reliance on EGF receptor signaling and mediates anti-EGFR therapeutic resistance in head and neck cancer Cancer Res., 73 (2013),pp. 3381-3392
|
[20] |
Li, Z.J., Nieuwenhuis, E., Nien, W. et al. Kif7 regulates Gli2 through Sufu-dependent and -independent functions during skin development and tumorigenesis Development, 139 (2012),pp. 4152-4161
|
[21] |
Liu, Z., Xu, J., He, J. et al. A critical role of autocrine sonic hedgehog signaling in human CD138+ myeloma cell survival and drug resistance Blood, 124 (2014),pp. 2061-2071
|
[22] |
McLean, M.H., El-Omar, E.M. Genetics of gastric cancer Nat. Rev. Gastroenterol. Hepatol., 11 (2014),pp. 664-674
|
[23] |
Motoyama, J., Liu, J., Mo, R. et al. Nat. Genet., 20 (1998),pp. 54-57
|
[24] |
Nozawa, Y.I., Lin, C., Chuang, P.T. Hedgehog signaling from the primary cilium to the nucleus: an emerging picture of ciliary localization, trafficking and transduction Curr. Opin. Genet. Dev., 23 (2013),pp. 429-437
|
[25] |
Orditura, M., Galizia, G., Sforza, V. et al. Treatment of gastric cancer World J. Gastroenterol., 20 (2014),pp. 1635-1649
|
[26] |
Papanastasopoulos, P., Stebbing, J. Molecular basis of 5-fluorouracil-related toxicity: lessons from clinical practice Anticancer Res., 34 (2014),pp. 1531-1535
|
[27] |
Persoskie, A., Ferrer, R.A. A most odd ratio::interpreting and describing odds ratios Am. J. Prev. Med., 52 (2017),pp. 224-228
|
[28] |
Proserpio, I., Rausei, S., Barzaghi, S. et al. Multimodal treatment of gastric cancer World J. Gastrointest. Surg., 6 (2014),pp. 55-58
|
[29] |
Rassouli, F.B., Matin, M.M., Saeinasab, M. Cancer stem cells in human digestive tract malignancies Tumour Biol., 37 (2016),pp. 7-21
|
[30] |
Razzak, M. Genetics: new molecular classification of gastric adenocarcinoma proposed by the Cancer Genome Atlas Nat. Rev. Clin. Oncol., 11 (2014),p. 499
|
[31] |
Reya, T., Morrison, S.J., Clarke, M.F. et al. Stem cells, cancer, and cancer stem cells Nature, 414 (2001),pp. 105-111
|
[32] |
Rimkus, T.K., Carpenter, R.L., Qasem, S. et al. Targeting the sonic hedgehog signaling pathway: review of smoothened and GLI inhibitors Cancers; Basel, 8 (2016)
|
[33] |
Sarkadi, B., Ozvegy-Laczka, C., Nemet, K. et al. ABCG2 – a transporter for all seasons FEBS Lett., 567 (2004),pp. 116-120
|
[34] |
Singh, R.R., Kunkalla, K., Qu, C. et al. ABCG2 is a direct transcriptional target of hedgehog signaling and involved in stroma-induced drug tolerance in diffuse large B-cell lymphoma Oncogene, 30 (2011),pp. 4874-4886
|
[35] |
Steg, A.D., Bevis, K.S., Katre, A.A. et al. Stem cell pathways contribute to clinical chemoresistance in ovarian cancer Clin. Cancer Res., 18 (2012),pp. 869-881
|
[36] |
Steg, A.D., Katre, A.A., Bevis, K.S. et al. Smoothened antagonists reverse taxane resistance in ovarian cancer Mol. Cancer Ther., 11 (2012),pp. 1587-1597
|
[37] |
Taipale, J., Beachy, P.A. The Hedgehog and Wnt signalling pathways in cancer Nature, 411 (2001),pp. 349-354
|
[38] |
Takebe, N., Miele, L., Harris, P.J. et al. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update Nat. Rev. Clin. Oncol., 12 (2015),pp. 445-464
|
[39] |
Torre, L.A., Bray, F., Siegel, R.L. et al. Global cancer statistics, 2012 CA Cancer J. Clin., 65 (2015),pp. 87-108
|
[40] |
Wang, J.C., Dick, J.E. Cancer stem cells: lessons from leukemia Trends Cell Biol., 15 (2005),pp. 494-501
|
[41] |
Wang, T., Ong, C.W., Shi, J. et al. Sequential expression of putative stem cell markers in gastric carcinogenesis Br. J. Cancer, 105 (2011),pp. 658-665
|
[42] |
Weiswald, L.B., Bellet, D., Dangles-Marie, V. Spherical cancer models in tumor biology Neoplasia, 17 (2015),pp. 1-15
|
[43] |
Xu, M., Gong, A., Yang, H. et al. Sonic hedgehog-glioma associated oncogene homolog 1 signaling enhances drug resistance in CD44(+)/Musashi-1(+) gastric cancer stem cells Cancer Lett., 369 (2015),pp. 124-133
|
[44] |
Yang, L., Xie, G., Fan, Q. et al. Activation of the hedgehog-signaling pathway in human cancer and the clinical implications Oncogene, 29 (2010),pp. 469-481
|
[45] |
Yoon, C., Cho, S.J., Aksoy, B.A. et al. Chemotherapy resistance in diffuse-type gastric adenocarcinoma is mediated by RhoA activation in cancer stem-like cells Clin. Cancer Res., 22 (2016),pp. 971-983
|
[46] |
Yu, B., Xie, J. Identifying therapeutic targets in gastric cancer: the current status and future direction Acta Biochim. Biophys. Sin. (Shanghai), 48 (2016),pp. 90-96
|
[47] |
Yuan, M., Yang, Y., Lv, W. et al. Paclitaxel combined with capecitabine as first-line chemotherapy for advanced or recurrent gastric cancer Oncol. Lett., 8 (2014),pp. 351-354
|
[48] |
Zahreddine, H.A., Culjkovic-Kraljacic, B., Assouline, S. et al. The sonic hedgehog factor GLI1 imparts drug resistance through inducible glucuronidation Nature, 511 (2014),pp. 90-93
|