[1] |
Alonso, J.M., Stepanova, A.N., Leisse, T.J. et al. Science, 301 (2003),pp. 653-657
|
[2] |
Baker, A., Hogg, Thomas L., Warriner, Stuart L. Peroxisome protein import: a complex journey Biochem. Soc. Trans., 44 (2016),pp. 783-789
|
[3] |
Basha, E., Friedrich, K.L., Vierling, E. The N-terminal arm of small heat shock proteins is important for both chaperone activity and substrate specificity J. Biol. Chem., 281 (2006),pp. 39943-39952
|
[4] |
Basha, E., O'Neill, H., Vierling, E. Small heat shock proteins and alpha-crystallins: dynamic proteins with flexible functions Trends Biochem. Sci., 37 (2012),pp. 106-117
|
[5] |
Beers, R.F., Sizer, I.W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase J. Biol. Chem., 195 (1952),pp. 133-140
|
[6] |
Bondino, H.G., Valle, E.M., ten Have, A. Evolution and functional diversification of the small heat shock protein/alpha-crystallin family in higher plants Planta, 235 (2012),pp. 1299-1313
|
[7] |
Brocard, C., Hartig, A. Peroxisome targeting signal 1: is it really a simple tripeptide? Biochim. Biophys. Acta, 1763 (2006),pp. 1565-1573
|
[8] |
Chelikani, P., Fita, I., Loewen, P.C. Diversity of structures and properties among catalases Cell. Mol. Life Sci., 61 (2004),pp. 192-208
|
[9] |
Chen, Q., Osteryoung, K., Vierling, E. J. Biol. Chem., 269 (1994),pp. 13216-13223
|
[10] |
Chen, R.Q., Sun, S.L., Wang, C. et al. Cell Res., 19 (2009),pp. 1377-1387
|
[11] |
Chowdhary, G., Kataya, A.R.A., Lingner, T. et al. Non-canonical peroxisome targeting signals: identification of novel PTS1 tripeptides and characterization of enhancer elements by computational permutation analysis BMC Plant Biol., 12 (2012),p. 142
|
[12] |
Clough, S.J., Bent, A.F. Plant J., 16 (1998),pp. 735-743
|
[13] |
del Rio, L.A., Sandalio, L.M., Corpas, F.J. et al. Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling Plant Physiol., 141 (2006),pp. 330-335
|
[14] |
Frugoli, J.A., Zhong, H.H., Nuccio, M.L. et al. Plant Physiol., 112 (1996),pp. 327-336
|
[15] |
Fukamatsu, Y., Yabe, N., Hasunuma, K. Plant Cell Physiol., 44 (2003),pp. 982-989
|
[16] |
Gould, S.J., Keller, G.A., Subramani, S. Identification of a peroxisomal targeting signal at the carboxy terminus of firefly luciferase J. Cell Biol., 105 (1987),pp. 2923-2931
|
[17] |
Hackenberg, T., Juul, T., Auzina, A. et al. Plant Cell, 25 (2013),pp. 4616-4626
|
[18] |
Haslbeck, M., Franzmann, T., Weinfurtner, D. et al. Some like it hot: the structure and function of small heat-shock proteins Nat. Struct. Mol. Biol., 12 (2005),pp. 842-846
|
[19] |
Hu, Y.Q., Liu, S., Yuan, H.M. et al. Plant Cell Environ., 33 (2010),pp. 1656-1670
|
[20] |
Jaya, N., Garcia, V., Vierling, E. Substrate binding site flexibility of the small heat shock protein molecular chaperones Proc. Natl. Acad. Sci. U. S. A., 106 (2009),pp. 15604-15609
|
[21] |
Kamigaki, A., Mano, S., Terauchi, K. et al. Identification of peroxisomal targeting signal of pumpkin catalase and the binding analysis with PTS1 receptor Plant J., 33 (2003),pp. 161-175
|
[22] |
Kunze, M., Neuberger, G., Maurer-Stroh, S. et al. Structural requirements for interaction of peroxisomal targeting signal 2 and its receptor PEX7 J. Biol. Chem., 286 (2011),pp. 45048-45062
|
[23] |
Li, J., Liu, J., Wang, G. et al. Plant Cell, 27 (2015),pp. 908-925
|
[24] |
Li, Y.S., Chen, L.C., Mu, J.Y. et al. Plant Physiol., 163 (2013),pp. 1059-1070
|
[25] |
Lingner, T., Kataya, A.R., Antonicelli, G.E. et al. Plant Cell, 23 (2011),pp. 1556-1572
|
[26] |
Liu, J.T., Guo, Y. J. Genet. Genomics, 38 (2011),pp. 307-313
|
[27] |
Livak, K.J., Schmittgen, T.D. Methods, 25 (2001),pp. 402-408
|
[28] |
Loew, O. A new enzyme of general occurrence in organisms Science, 11 (1900),pp. 701-702
|
[29] |
Ma, C., Reumann, S. J. Exp. Bot., 59 (2008),pp. 3767-3779
|
[30] |
Ma, C.L., Haslbeck, M., Babujee, L. et al. Identification and characterization of a stress-inducible and a constitutive small heat-shock protein targeted to the matrix of plant peroxisomes Plant Physiol., 141 (2006),pp. 47-60
|
[31] |
Mathioudakis, M.M., Veiga, R.S.L., Canto, T. et al. Pepino mosaic virus triple gene block protein 1 (TGBp1) interacts with and increases tomato catalase 1 activity to enhance virus accumulation Mol. Plant Pathol., 14 (2013),pp. 589-601
|
[32] |
McDonald, E.T., Bortolus, M., Koteiche, H.A. et al. Sequence, structure, and dynamic determinants of Hsp27 (HspB1) equilibrium dissociation are encoded by the N-terminal domain Biochemistry, 51 (2012),pp. 1257-1268
|
[33] |
Mhamdi, A., Noctor, G., Baker, A. Plant catalases: peroxisomal redox guardians Arch. Biochem. Biophys., 525 (2012),pp. 181-194
|
[34] |
Mhamdi, A., Queval, G., Chaouch, S. et al. J. Exp. Bot., 61 (2010),pp. 4197-4220
|
[35] |
Moirangthem, L.D., Bhattacharya, S., Stensjo, K. et al. A high constitutive catalase activity confers resistance to methyl viologen-promoted oxidative stress in a mutant of the cyanobacterium Nostoc punctiforme ATCC 29133 Appl. Microbiol. Biotechnol., 98 (2014),pp. 3809-3818
|
[36] |
Mu, C.J., Zhang, S.J., Yu, G.Z. et al. PLoS One, 8 (2013),p. e82264
|
[37] |
Mullen, R.T., Lee, M.S., Trelease, R.N. Identification of the peroxisomal targeting signal for cottonseed catalase Plant J., 12 (1997),pp. 313-322
|
[38] |
Platta, H.W., Erdmann, R. The peroxisomal protein import machinery FEBS Lett., 581 (2007),pp. 2811-2819
|
[39] |
Queval, G., Issakidis-Bourguet, E., Hoeberichts, F.A. et al. Plant J., 52 (2007),pp. 640-657
|
[40] |
Redinbaugh, M.G., Sabre, M., Scandalios, J.G. Proc. Natl. Acad. Sci. U. S. A., 87 (1990),pp. 6853-6857
|
[41] |
Reumann, S. Specification of the peroxisome targeting signals type 1 and type 2 of plant peroxisomes by bioinformatics analyses Plant Physiol., 135 (2004),pp. 783-800
|
[42] |
Reumann, S., Buchwald, D., Lingner, T. PredPlantPTS1: a web server for the prediction of plant peroxisomal proteins Front. Plant Sci., 3 (2012),p. 194
|
[43] |
Reumann, S., Chowdhary, G., Lingner, T. Characterization, prediction and evolution of plant peroxisomal targeting signals type 1 (PTS1s) Biochim. Biophys. Acta, 1863 (2016),pp. 790-803
|
[44] |
Scharf, K.D., Siddique, M., Vierling, E. Cell Stress Chaperones, 6 (2001),pp. 225-237
|
[45] |
Siddique, M., Gernhard, S., von Koskull-Doring, P. et al. Cell Stress Chaperones, 13 (2008),pp. 183-197
|
[46] |
Skoulding, N.S., Chowdhary, G., Deus, M.J. et al. J. Mol. Biol., 427 (2015),pp. 1085-1101
|
[47] |
Sun, W.N., Bernard, C., van de Cotte, B. et al. Plant J., 27 (2001),pp. 407-415
|
[48] |
Sun, W.N., Van Montagu, M., Verbruggen, N. Small heat shock proteins and stress tolerance in plants Biochim. Biophys. Acta, 1577 (2002),pp. 1-9
|
[49] |
Swinkels, B.W., Gould, S.J., Bodnar, A.G. et al. A novel, cleavable peroxisomal targeting signal at the amino-terminus of the rat 3-ketoacyl-CoA thiolase EMBO J., 10 (1991),pp. 3255-3262
|
[50] |
Vanderauwera, S., Zimmermann, P., Rombauts, S. et al. Plant Physiol., 139 (2005),pp. 806-821
|
[51] |
Verslues, P.E., Batelli, G., Grillo, S. et al. Mol. Cell Biol., 27 (2007),pp. 7771-7780
|
[52] |
Vierling, E. The roles of heat-shock proteins in plants Annu. Rev. Plant Phys., 42 (1991),pp. 579-620
|
[53] |
Waadt, R., Schmidt, L.K., Lohse, M. et al. Multicolor bimolecular fluorescence complementation reveals simultaneous formation of alternative CBL/CIPK complexes in planta Plant J., 56 (2008),pp. 505-516
|
[54] |
Wadhwa, R., Ryu, J., Gao, R. et al. J. Biol. Chem., 285 (2010),pp. 3833-3839
|
[55] |
Waters, E.R. The evolution, function, structure, and expression of the plant sHSPs J. Exp. Bot., 64 (2013),pp. 391-403
|
[56] |
Waters, E.R., Aevermann, B.D., Sanders-Reed, Z. Comparative analysis of the small heat shock proteins in three angiosperm genomes identifies new subfamilies and reveals diverse evolutionary patterns Cell Stress Chaperones, 13 (2008),pp. 127-142
|
[57] |
Waters, E.R., Lee, G.J., Vierling, E. Evolution, structure and function of the small heat shock proteins in plants J. Exp. Bot., 47 (1996),pp. 325-338
|
[58] |
Xing, H.L., Dong, L., Wang, Z.P. et al. A CRISPR/Cas9 toolkit for multiplex genome editing in plants BMC Plant Biol., 14 (2014),p. 327
|
[59] |
Xing, Y., Jia, W.S., Zhangl, J.H. Plant J., 54 (2008),pp. 440-451
|
[60] |
Xu, J., Duan, X., Yang, J. et al. Enhanced reactive oxygen species scavenging by overproduction of superoxide dismutase and catalase delays postharvest physiological deterioration of cassava storage roots Plant Physiol., 161 (2013),pp. 1517-1528
|
[61] |
Yang, T., Poovaiah, B.W. Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin Proc. Natl. Acad. Sci. U. S. A., 99 (2002),pp. 4097-4102
|
[62] |
Yoo, S.D., Cho, Y.H., Sheen, J. Nat. Protoc., 2 (2007),pp. 1565-1572
|
[63] |
Zimmermann, P., Heinlein, C., Orendi, G. et al. Plant Cell Environ., 29 (2006),pp. 1049-1060
|
[64] |
Zou, J.J., Li, X.D., Ratnasekera, D. et al. Plant Cell, 27 (2015),pp. 1445-1460
|