5.9
CiteScore
5.9
Impact Factor
Volume 44 Issue 6
Jun.  2017
Turn off MathJax
Article Contents

LRH-1 senses signaling from phosphatidylcholine to regulate the expansion growth of digestive organs via synergy with Wnt/β-catenin signaling in zebrafish

doi: 10.1016/j.jgg.2017.03.006
More Information
  • Corresponding author: E-mail address: zyin@ihb.ac.cn (Zhan Yin)
  • Received Date: 2016-08-11
  • Accepted Date: 2017-03-30
  • Rev Recd Date: 2017-03-28
  • Available Online: 2017-04-27
  • Publish Date: 2017-06-20
  • Liver receptor homolog-1 (LRH-1) is an orphan nuclear receptor that is critical for the growth and proliferation of cancer cells and other biological processes, including lipid transportation and metabolism, sexual determination and steroidogenesis. However, because homozygouslrh-1−/− mice die in utero, the regulatory mechanisms involved in embryonic development mediated by this receptor are poorly understood. In the present study, we performed transcription activator-like effector nuclease (TALEN)-mediated loss-of-function assays, taking advantage of zebrafish external fertilization, to investigate the function of lrh-1. The digestive organs were affected by lrh-1 depletion as a result of cell-cycle arrest (at the checkpoint of G1 to S phase), but not cell apoptosis. Biochemical analysis revealed that LRH-1 augments the transcriptional activity of β-catenin 1 and 2 via physical interactions. Screening the specific ligand(s) sensed by LRH-1 during organogenesis revealed that phosphatidylcholine (PC), a potential ligand, is the upstream target of LRH-1 during endoderm development. These data provide evidence for the crosstalk between the PC/LRH-1 and Wnt/β-catenin signaling pathways during the expansion growth of endoderm organs.
  • loading
  • [1]
    Allen, J.D., Pernet, B. Intermediate modes of larval development: bridging the gap between planktotrophy and lecithotrophy Evol. Dev., 9 (2007),pp. 643-653
    [2]
    Bayrer, J.R., Mukkamala, S., Sablin, E.P. et al. Silencing LRH-1 in colon cancer cell lines impairs proliferation and alters gene expression programs Proc. Natl. Acad. Sci. U. S. A., 112 (2015),pp. 2467-2472
    [3]
    Benod, C., Carlsson, J., Uthayaruban, R. et al. Structure-based discovery of antagonists of nuclear receptor LRH-1 J. Biol. Chem., 288 (2013),pp. 19830-19844
    [4]
    Benod, C., Vinogradova, M.V., Jouravel, N. et al. Nuclear receptor liver receptor homologue 1 (LRH-1) regulates pancreatic cancer cell growth and proliferation Proc. Natl. Acad. Sci. U. S. A., 108 (2011),pp. 16927-16931
    [5]
    Blind, R.D., Sablin, E.P., Kuchenbecker, K.M. et al. The signaling phospholipid PIP3 creates a new interaction surface on the nuclear receptor SF-1 Proc. Natl. Acad. Sci. U. S. A., 111 (2014),pp. 15054-15059
    [6]
    Bohan, A., Chen, W.S., Denson, L.A. et al. Tumor necrosis factor alpha-dependent up-regulation of Lrh-1 and Mrp3(Abcc3) reduces liver injury in obstructive cholestasis J. Biol. Chem., 278 (2003),pp. 36688-36698
    [7]
    Botrugno, O.A., Fayard, E., Annicotte, J.S. et al. Synergy between LRH-1 and beta-catenin induces G1 cyclin-mediated cell proliferation Mol. Cell, 15 (2004),pp. 499-509
    [8]
    Chand, A.L., Herridge, K.A., Thompson, E.W. et al. The orphan nuclear receptor LRH-1 promotes breast cancer motility and invasion Endocr. Relat. Cancer, 17 (2010),pp. 965-975
    [9]
    Chen, F., Ma, L., Dawson, P.A. et al. Liver receptor homologue-1 mediates species- and cell line-specific bile acid-dependent negative feedback regulation of the apical sodium-dependent bile acid transporter J. Biol. Chem., 278 (2003),pp. 19909-19916
    [10]
    Chen, J., Ruan, H., Ng, S.M. et al. Loss of function of def selectively up-regulates Delta113p53 expression to arrest expansion growth of digestive organs in zebrafish Genes Dev., 19 (2005),pp. 2900-2911
    [11]
    Chung, W.S., Shin, C.H., Stainier, D.Y. Bmp2 signaling regulates the hepatic versus pancreatic fate decision Dev. Cell, 15 (2008),pp. 738-748
    [12]
    Clevers, H. Wnt/beta-catenin signaling in development and disease Cell, 127 (2006),pp. 469-480
    [13]
    Corzo, C.A., Mari, Y., Chang, M.R. et al. Antiproliferation activity of a small molecule repressor of liver receptor homolog 1 Mol. Pharmacol., 87 (2015),pp. 296-304
    [14]
    del Castillo-Olivares, A., Campos, J.A., Pandak, W.M. et al. The role of alpha1-fetoprotein transcription factor/LRH-1 in bile acid biosynthesis: a known nuclear receptor activator that can act as a suppressor of bile acid biosynthesis J. Biol. Chem., 279 (2004),pp. 16813-16821
    [15]
    del Castillo-Olivares, A., Gil, G. Alpha 1-fetoprotein transcription factor is required for the expression of sterol 12alpha -hydroxylase, the specific enzyme for cholic acid synthesis. Potential role in the bile acid-mediated regulation of gene transcription J. Biol. Chem., 275 (2000),pp. 17793-17799
    [16]
    Delerive, P., Galardi, C.M., Bisi, J.E. et al. Mol. Endocrinol., 18 (2004),pp. 2378-2387
    [17]
    Deutsch, G., Jung, J., Zheng, M. et al. A bipotential precursor population for pancreas and liver within the embryonic endoderm Development, 128 (2001),pp. 871-881
    [18]
    Dong, P.D., Munson, C.A., Norton, W. et al. Fgf10 regulates hepatopancreatic ductal system patterning and differentiation Nat. Genet., 39 (2007),pp. 397-402
    [19]
    Evason, K.J., Francisco, M.T., Juric, V. et al. Identification of chemical inhibitors of beta-catenin-driven liver tumorigenesis in zebrafish PLoS Genet., 11 (2015),p. e1005305
    [20]
    Fayard, E., Auwerx, J., Schoonjans, K. LRH-1: an orphan nuclear receptor involved in development, metabolism and steroidogenesis Trends Cell Biol., 14 (2004),pp. 250-260
    [21]
    Fraher, D., Sanigorski, A., Mellett, N.A. et al. Zebrafish embryonic lipidomic analysis reveals that the yolk cell is metabolically active in processing lipid Cell Rep., 14 (2016),pp. 1317-1329
    [22]
    Freeman, L.A., Kennedy, A., Wu, J. et al. J. Lipid Res., 45 (2004),pp. 1197-1206
    [23]
    Goessling, W., North, T.E., Lord, A.M. et al. Dev. Biol., 320 (2008),pp. 161-174
    [24]
    He, T.C., Sparks, A.B., Rago, C. et al. Identification of c-MYC as a target of the APC pathway Science, 281 (1998),pp. 1509-1512
    [25]
    Holland, L.Z. Developmental biology: a chordate with a difference Nature, 447 (2007),pp. 153-155
    [26]
    Huang, J., Iqbal, J., Saha, P.K. et al. Molecular characterization of the role of orphan receptor small heterodimer partner in development of fatty liver Hepatology, 46 (2007),pp. 147-157
    [27]
    Huang, P., Xiao, A., Zhou, M. et al. Heritable gene targeting in zebrafish using customized TALENs Nat. Biotechnol., 29 (2011),pp. 699-700
    [28]
    Kanno, K., Wu, M.K., Scapa, E.F. et al. Structure and function of phosphatidylcholine transfer protein (PC-TP)/StarD2 Biochim. Biophys. Acta., 1771 (2007),pp. 654-662
    [29]
    Kimmel, C.B., Ballard, W.W., Kimmel, S.R. et al. Stages of embryonic development of the zebrafish Dev. Dyn., 203 (1995),pp. 253-310
    [30]
    Kolm, P.J., Apekin, V., Sive, H. Dev. Biol., 192 (1997),pp. 1-16
    [31]
    Korinek, V., Barker, N., Morin, P.J. et al. Science, 275 (1997),pp. 1784-1787
    [32]
    Krylova, I.N., Sablin, E.P., Moore, J. et al. Structural analyses reveal phosphatidyl inositols as ligands for the NR5 orphan receptors SF-1 and LRH-1 Cell, 120 (2005),pp. 343-355
    [33]
    Lancman, J.J., Zvenigorodsky, N., Gates, K.P. et al. Specification of hepatopancreas progenitors in zebrafish by hnf1ba and wnt2bb Development, 140 (2013),pp. 2669-2679
    [34]
    Li, Y., Choi, M., Cavey, G. et al. Crystallographic identification and functional characterization of phospholipids as ligands for the orphan nuclear receptor steroidogenic factor-1 Mol. Cell, 17 (2005),pp. 491-502
    [35]
    Li, Y., Li, Q., Long, Y. et al. Lzts2 regulates embryonic cell movements and dorsoventral patterning through interaction with and export of nuclear beta-catenin in zebrafish J. Biol. Chem., 286 (2011),pp. 45116-45130
    [36]
    Liu, J.X., Zhang, D., Xie, X. et al. Eaf1 and Eaf2 negatively regulate canonical Wnt/beta-catenin signaling Development, 140 (2013),pp. 1067-1078
    [37]
    Logan, C.Y., Nusse, R. The Wnt signaling pathway in development and disease Annu. Rev. Cell Dev. Biol., 20 (2004),pp. 781-810
    [38]
    Lorent, K., Yeo, S.Y., Oda, T. et al. Inhibition of Jagged-mediated Notch signaling disrupts zebrafish biliary development and generates multi-organ defects compatible with an Alagille syndrome phenocopy Development, 131 (2004),pp. 5753-5766
    [39]
    Lu, F.I., Sun, Y.H., Wei, C.Y. et al. Tissue-specific derepression of TCF/LEF controls the activity of the Wnt/beta-catenin pathway Nat. Commun., 5 (2014),p. 5368
    [40]
    Lu, H., Ma, J., Yang, Y. et al. EpCAM is an endoderm-specific Wnt derepressor that licenses hepatic development Dev. Cell, 24 (2013),pp. 543-553
    [41]
    Luo, Y., Liang, C.P., Tall, A.R. J. Biol. Chem., 276 (2001),pp. 24767-24773
    [42]
    Mir, R., Pradhan, S.J., Patil, P. et al. Wnt/beta-catenin signaling regulated SATB1 promotes colorectal cancer tumorigenesis and progression Oncogene, 35 (2016),pp. 1679-1691
    [43]
    Moon, R.T., Bowerman, B., Boutros, M. et al. The promise and perils of Wnt signaling through beta-catenin Science, 296 (2002),pp. 1644-1646
    [44]
    Morin, P.J., Sparks, A.B., Korinek, V. et al. Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC Science, 275 (1997),pp. 1787-1790
    [45]
    Nissim, S., Weeks, O., Talbot, J.C. et al. Iterative use of nuclear receptor Nr5a2 regulates multiple stages of liver and pancreas development Dev. Biol., 418 (2016),pp. 108-123
    [46]
    Ober, E.A., Verkade, H., Field, H.A. et al. Mesodermal Wnt2b signalling positively regulates liver specification Nature, 442 (2006),pp. 688-691
    [47]
    Ortlund, E.A., Lee, Y., Solomon, I.H. et al. Modulation of human nuclear receptor LRH-1 activity by phospholipids and SHP Nat. Struct. Mol. Biol., 12 (2005),pp. 357-363
    [48]
    Pare, J.F., Malenfant, D., Courtemanche, C. et al. J. Biol. Chem., 279 (2004),pp. 21206-21216
    [49]
    Pasca di Magliano, M., Biankin, A.V., Heiser, P.W. et al. Common activation of canonical Wnt signaling in pancreatic adenocarcinoma PLoS One, 2 (2007),p. e1155
    [50]
    Poulain, M., Ober, E.A. Interplay between Wnt2 and Wnt2bb controls multiple steps of early foregut-derived organ development Development, 138 (2011),pp. 3557-3568
    [51]
    Rausa, F.M., Galarneau, L., Belanger, L. et al. Mech. Dev., 89 (1999),pp. 185-188
    [52]
    Schoonjans, K., Annicotte, J.S., Huby, T. et al. Liver receptor homolog 1 controls the expression of the scavenger receptor class B type I EMBO Rep., 3 (2002),pp. 1181-1187
    [53]
    Schoonjans, K., Dubuquoy, L., Mebis, J. et al. Liver receptor homolog 1 contributes to intestinal tumor formation through effects on cell cycle and inflammation Proc. Natl. Acad. Sci. U. S. A., 102 (2005),pp. 2058-2062
    [54]
    Shin, D., Shin, C.H., Tucker, J. et al. Bmp and Fgf signaling are essential for liver specification in zebrafish Development, 134 (2007),pp. 2041-2050
    [55]
    Shtutman, M., Zhurinsky, J., Simcha, I. et al. Proc. Natl. Acad. Sci. U. S. A., 96 (1999),pp. 5522-5527
    [56]
    Stafford, D., Prince, V.E. Retinoic acid signaling is required for a critical early step in zebrafish pancreatic development Curr. Biol., 12 (2002),pp. 1215-1220
    [57]
    Stoick-Cooper, C.L., Weidinger, G., Riehle, K.J. et al. Distinct Wnt signaling pathways have opposing roles in appendage regeneration Development, 134 (2007),pp. 479-489
    [58]
    Taniguchi, K., Roberts, L.R., Aderca, I.N. et al. Mutational spectrum of beta-catenin, AXIN1, and AXIN2 in hepatocellular carcinomas and hepatoblastomas Oncogene, 21 (2002),pp. 4863-4871
    [59]
    Tetsu, O., McCormick, F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells Nature, 398 (1999),pp. 422-426
    [60]
    Thisse, C., Thisse, B. Nat. Protoc., 3 (2008),pp. 59-69
    [61]
    Tokumoto, N., Ikeda, S., Ishizaki, Y. et al. Immunohistochemical and mutational analyses of Wnt signaling components and target genes in intrahepatic cholangiocarcinomas Int. J. Oncol., 27 (2005),pp. 973-980
    [62]
    Venteclef, N., Haroniti, A., Tousaint, J.J. et al. Regulation of anti-atherogenic apolipoprotein M gene expression by the orphan nuclear receptor LRH-1 J. Biol. Chem., 283 (2008),pp. 3694-3701
    [63]
    Wagner, R.T., Xu, X., Yi, F. et al. Canonical Wnt/beta-catenin regulation of liver receptor homolog-1 mediates pluripotency gene expression Stem Cells, 28 (2010),pp. 1794-1804
    [64]
    Wallace, K.N., Akhter, S., Smith, E.M. et al. Intestinal growth and differentiation in zebrafish Mech. Dev., 122 (2005),pp. 157-173
    [65]
    Wang, S., Lan, F., Huang, L. et al. Suppression of hLRH-1 mediated by a DNA vector-based RNA interference results in cell cycle arrest and induction of apoptosis in hepatocellular carcinoma cell BEL-7402 Biochem. Biophys. Res. Commun., 333 (2005),pp. 917-924
    [66]
    Wells, J.M., Melton, D.A. Vertebrate endoderm development Annu. Rev. Cell Dev. Biol., 15 (1999),pp. 393-410
    [67]
    Westerfield, M.
    [68]
    Wiegand, M.D. Composition, accumulation and utilization of yolk lipids in teleost fish Rev. Fish Biol. Fish., 6 (1996),pp. 259-286
    [69]
    Yang, X., Gu, Q., Lin, L. et al. Nucleoporin 62-like protein activates canonical Wnt signaling through facilitating the nuclear import of beta-catenin in zebrafish Mol. Cell Biol., 35 (2015),pp. 1110-1124
    [70]
    Zaret, K.S. Regulatory phases of early liver development: paradigms of organogenesis Nat. Rev. Genet., 3 (2002),pp. 499-512
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (85) PDF downloads (3) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return