[1] |
Bogdanove, A.J., Voytas, D.F. TAL effectors: customizable proteins for DNA targeting Science, 333 (2011),pp. 1843-1846
|
[2] |
Brinkman, E.K., Chen, T., Amendola, M. et al. Easy quantitative assessment of genome editing by sequence trace decomposition Nucleic Acids Res., 42 (2014),p. e168
|
[3] |
Carlson, D.F., Tan, W., Lillico, S.G. et al. Efficient TALEN-mediated gene knockout in livestock Proc. Natl. Acad. Sci. U. S. A., 109 (2012),pp. 17382-17387
|
[4] |
Cho, S.W., Kim, S., Kim, Y. et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases Genome Res., 24 (2014),pp. 132-141
|
[5] |
Cong, L., Ran, F.A., Cox, D. et al. Multiplex genome engineering using CRISPR/Cas systems Science, 339 (2013),pp. 819-823
|
[6] |
Doudna, J.A., Charpentier, E. The new frontier of genome engineering with CRISPR-Cas9 Science, 346 (2014),p. 1258096
|
[7] |
Doyon, Y., Choi, V.M., Xia, D.F. et al. Transient cold shock enhances zinc-finger nuclease-mediated gene disruption Nat. Methods, 7 (2010),pp. 459-460
|
[8] |
Guschin, D.Y., Waite, A.J., Katibah, G.E. et al. A rapid and general assay for monitoring endogenous gene modification Methods Mol. Biol., 649 (2010),pp. 247-256
|
[9] |
Hockemeyer, D., Soldner, F., Beard, C. et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases Nat. Biotechnol., 27 (2009),pp. 851-857
|
[10] |
Hockemeyer, D., Wang, H., Kiani, S. et al. Genetic engineering of human pluripotent cells using TALE nucleases Nat. Biotechnol., 29 (2011),pp. 731-734
|
[11] |
Hsu, P.D., Scott, D.A., Weinstein, J.A. et al. DNA targeting specificity of RNA-guided Cas9 nucleases Nat. Biotechnol., 31 (2013),pp. 827-832
|
[12] |
Hsu, P.D., Lander, E.S., Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering Cell, 157 (2014),pp. 1262-1278
|
[13] |
Kleinstiver, B.P., Pattanayak, V., Prew, M.S. et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects Nature, 529 (2016),pp. 490-495
|
[14] |
Ran, F.A., Cong, L., Yan, W.X. et al. Nature, 520 (2015),pp. 186-191
|
[15] |
Slaymaker, I.M., Gao, L., Zetsche, B. et al. Rationally engineered Cas9 nucleases with improved specificity Science, 351 (2016),pp. 84-88
|
[16] |
Urnov, F.D., Rebar, E.J., Holmes, M.C. et al. Genome editing with engineered zinc finger nucleases Nat. Rev. Genet., 11 (2010),pp. 636-646
|
[17] |
Wang, W., Kutny, P.M., Byers, S.L. et al. Delivery of Cas9 protein into mouse zygotes through a series of electroporation dramatically increases the efficiency of model creation J. Genet. Genomics, 43 (2016),pp. 319-327
|
[18] |
Wiles, M.V., Qin, W., Cheng, A.W. et al. CRISPR-Cas9-mediated genome editing and guide RNA design Mamm. Genome, 26 (2015),pp. 501-510
|
[19] |
Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system Cell, 163 (2015),pp. 759-771
|